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On freeway traffic density estimation for a jump Markov linear model
based on Daganzo’s cell transmission model

Kateřina Staňková, Bart De Schutter

Abstract— This paper deals with problem of the real-time
freeway traffic density estimation/prediction for a jump Markov
linear model based on Daganzo’s cell transmission variant
of the Lighthill-Whitham-Richards continuous macroscopic
freeway model. To solve the problem we propose a particle-
filtering-based estimation/prediction method. Its performance is
illustrated on case studies involving a four-cell freeway segment.
The case studies suggest that the proposed methodology can be
used for real-time traffic density estimation/prediction. Possible
pitfalls of our approach are also discussed.

Keywords: traffic density estimation, jump Markov linear
models, particle filtering, Lighthill-Whitham-Richards equa-
tion, cell transmission model.

I. INTRODUCTION & LITERATURE OVERVIEW

Freeway traffic congestion, caused by the rapid increase
of traffic demand in the past decades has become a big
problem, due to its high social and economical costs [1]–[11].
The control measures that are typically employed in freeway
networks in order to eliminate congestion are ramp metering
(with traffic signals at on-ramps or freeway interchanges)
[6], [10], variable speed limits [2], road pricing [11], or
driver information and guidance systems [9]. One of the
prerequisites for efficient traffic control is efficient (real-time)
estimation of the traffic densities [12], [13], knowing only a
limited amount of (possibly biased) data.

In this paper we introduce a jump Markov linear model
(JMLM) [14]–[16] for freeway traffic density estimation.
This model is based on the linear switching model formula-
tion [17] of the Daganzo’s cell transmission model (CTM)
introduced in [18]. The CTM is derived from the Lighthill-
Whitham-Richards (LWR) model [19], [20], when assuming
that the fundamental diagram is piecewise-affine (triangular
or trapezoidal). The CTM simplifies the LWR model while
keeping its fundamental physical properties [6], [21]. The
linear switching model can be derived from the CTM with
additional assumptions on the congestion wavefront behavior.

The estimation problem dealt with in this paper is NP-
hard, and, therefore, efficient approximation methods are
needed to make the solution process tractable. We apply
particle filtering [22]–[26], also known as bootstrap filtering
[27], [28], as an efficient and scalable method of this type.
In this approach all information about the states of interest
is obtained from the conditional distribution of the states
given the past observations and the dynamics of the system.
It approximates the posterior density function of the state by
an empirical histogram obtained from the samples generated
by a Monte Carlo simulation. In the past, particle filtering
was used mainly for general JMLM estimation problems and
for navigation, tracking, and maneuvering problems [25],
[29]. In [8] a particle filtering method was applied for traffic
density estimation with a second-order nonlinear model (the
so-called compositional stochastic macroscopic traffic model
developed in [5]), as opposed to the first-order jump Markov
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linear model introduced in this paper. In [30] and [31] the so-
called piecewise-linearized cell transmission model, which is
also a linear switching model, for traffic density estimation
using mixture Kalman filters was introduced. It was assumed
that all freeway segments are either free or congested. In
our approach, we use the sampling importance resampling
method [24]–[26], known as well as adaptive importance
sampling [32], as a selection step. To the best of the authors’
knowledge, there is no research focusing on particle filtering
methods for the state estimation/prediction for CTM-based
jump Markov models.

This paper is organized as follows: After a presentation of
the model and a discussion of its properties in Section II,
the estimation problem is stated in Section III. The par-
ticle filtering-based method for the traffic state estimation
is proposed in Section IV. In Section V we present case
studies with the model and method introduced in the pre-
vious sections. In Section VI we discuss advantages and
disadvantages of the proposed model as well as those of
the proposed method. The conclusions, possible extensions
of the currently proposed model and method, and the future
research possibilities are be the subject of Section VII.

II. THE MODEL

A. Preliminaries: The LWR equation & the Godunov scheme

The classical Lighthill-Whitham-Richards (LWR) model
[19], [20] is based on the assumption (motivated by exper-
imental data) that vehicles tend to travel at the equilibrium
speed v = V (ρ) [km/h], where ρ(x, t) [veh/km] is the ve-
hicle density along the freeway section, and on the scalar
conservation law principle

∂tρ +∂xΦ(ρ) = 0, (1)

where Φ(·) [veh/h] is the traffic flow function. These assump-
tions lead to an equilibrium flow function Φ(ρ) = ρ V (ρ)
known as the fundamental diagram in traffic engineering
[19], [20]. The problem is to find ρ satisfying (1) with initial
condition ρ(x,0) = ρ0(x) and known boundary densities.
The solution ρ of this problem may develop discontinuities
satisfying the so-called entropy condition [33].

As conservation laws generate irregular flows, they cannot
be integrated numerically using standard methods such as
finite elements or finite differences, which may generate
instabilities and/or wrong shock speeds [34]. An efficient
first-order numerical method to solve such equations is the
Godunov scheme [35], which divides the computational
domain into segments, the so-called cells, of length ∆xi [km],
where it is assumed that the density ρi [veh/km] is constant
in each of them for a specific time interval. The Godunov
scheme is:

ρ+
i = ρi +

∆ t

∆xi

(φ num (ρi−1,ρi)−φ num (ρi,ρi+1)) , (2)

where ρ+
i denotes the traffic density in cell i for the next

time step, ∆ t is the time interval length, and φ num(ρ−,ρ+)
is the numerical flow solving the Riemann problem on the



interface having density values ρ− and ρ+ from the left and
the right, respectively [34]. The Courant-Friedrichs-Lewy
(CFL) condition v∆ t

∆xi
< 1, with the free flow speed v [km/h],

is a sufficient condition for (2) to converge to ρ [34]. To
treat the boundary conditions ghost cells are added from the
left and from the right and the traffic densities in these cells
are computed from the traffic flow measurements using (2).

Although φ num(ρ−,ρ+) might be difficult to compute in
general, in [18] the so-called cell transmission model (CTM),
based on the simplified numerical flow formulation

φ num(ρ−,ρ+)
def
= min

(

v+ρ−,w+

(

ρmax
+ −ρ+

))

, (3)

was introduced, with the congestion wave speed w [km/h],
and the maximal density ρmax [veh/km]. See Fig. 1 for the
graphical representation of the fundamental diagram.

Φ(ρ)

ρρmax
i

vi−1

vi−1 ·ρi−1

wi

wi(ρ
max
i −ρi)

Fig. 1. The CTM fundamental diagram

B. The linear switching model

In this section we present a linear switching model starting
from the CTM described in the previous section. This model
is similar to those introduced in [31], [36]. To illustrate
the derivation, we consider the freeway segment depicted
in Fig. 2 and Fig. 3, divided into four cells of the same
length. Generalization of the model by adding on-ramps and
off-ramps placed at the interfaces between neighboring cells
is described in the report [17].

SL SR

Fig. 2. The considered freeway segment

We call the interface between cells i−1 and i (see
Fig. 3) free (F) if vi−1ρi−1 ≤ wi(ρ

max
i − ρi) and con-

gested (C) if vi−1ρi−1 > wi(ρ
max
i − ρi). If the interface

is free, φ num(ρi−1,ρi)
def
= vi−1ρi−1, if it is congested,

φ num(ρi−1,ρi)
def
= wi(ρ

max
i −ρi). We refer to each of the pos-

sible combinations of F and C as the “mode” of the system,
while the traffic densities are the “states” of the system.

An alternative approach [31], [36] is to focus on the
congestion in the cells instead of the congestion at the cell
interfaces. In this approach the cell i is called congested
if ρi > ρcrit

i , where ρcrit
i is the so-called critical density. If

the critical density and the maximum flow and density have
the same value for all cells, i.e., ρcrit

i = ρcrit, Φmax
i = Φmax,

ρmax
i = ρmax, then ρcrit = wiρ

max/(vi−1 + wi). Clearly (see

Figure 1) ρi < ρcrit is equivalent to vi−1ρi−1 < wi(ρ
max−ρi)

and therefore in such case the definition of congestion via
critical cell density [31], [36] is equivalent to the definition
of congestion at the cell interfaces introduced in this paper.
However, the formulation of the congestion via cell interfaces

is more useful for real applications, as quantities usually
measured by sensors are speed and traffic flows, which are
quantities measured at a point. The placement of the sensors
can then coincide with the cell interfaces.

We make the following two assumptions:
Assumption 1: There is only one congestion wavefront

within the system in each time step.
Assumption 2: The congestion wave in the considered

system propagates from the downstream end.
In fact, relaxation of Assumptions 1 and 2 will extend

the number of possible modes of the system, but not the
solution methodology proposed in this paper. The possible

modes of the system S
def
= {1, . . . ,6} are depicted in Table I.

Let xk
def
= (ρ1(k),ρ2(k),ρ3(k),ρ4(k))

T , uk
def
= (ρL(k),ρR(k))T ,

yk
def
= (φL(k),φR(k))T

and let c
def
= ∆ t

∆x
. From the CFL condition

it follows that vc < 1 has to be satisfied.
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Fig. 3. The considered freeway segment in more detail

The Godunov scheme (2) for each mode n ∈ S (see
Table I) can be then rewritten as

xk+1 = A(n)xk +B(n)uk + µ(n), (4)

yk = C(n)xk +D(n)uk +ψ(n). (5)

For example, for n = 3 (2) can be rewritten in the form (4)–
(5) with C(3) = 0 and

A(3) =







1− cv1 0 0 0
cv1 1− cv2 0 0
0 cv2 1 cw4

0 0 0 1− cw4






,

B(3) =







cvL 0
0 0
0 0
0 cwR






, µ(3) =







0
0
−ρmax

4 cw4

0






,

D(3) =

(

vL 0
0 −wR

)

, ψ(3) =

(

0
wRρmax

R

)

.

interfaces

mode n L/1 1/2 2/3 3/4 4/F

1 F F F F F
2 F F F F C
3 F F F C C
4 F F C C C
5 F C C C C
6 C C C C C

TABLE I

THE POSSIBLE MODES n OF THE SYSTEM.

C. The properties of the linear switching model

For each mode the observability properties of the corre-
sponding linear system can be derived (using the Grammian
of (4) [37], similarly as it was done in [31] for a piecewise-
affine cell transmission model), leading to the following
conclusions regarding the model:

• If the freeway segment is free, the system is measur-
able using the downstream measurements (information
propagates downstream at speed v); if the segment



is congested, the system is observable using the up-
stream measurements (information propagates upstream
at speed w). Otherwise, the system is unobservable.

Considering the controllability of the considered system by
means of on-ramp metering, one can (similarly as with the
observability) conclude the following [37]:

• The free section of the segment is controllable from its
upstream end, while a congested section is controllable
from its downstream end. Without on-ramps the system
cannot be controlled by means of on-ramps unless it is
fully congested or fully free.

D. The jump Markov linear model

For the linear switching model the mode n is determined
by the flow/density condition at the individual cell interfaces.
As there is no direct measurement or observation of n, it can
be only derived from measured quantities (e.g. traffic speed,
traffic density). Therefore, it is reasonable to assume that the
mode jumps between possible values following a discrete-
time Markov chain with a certain transition probability.Then
the proposed linear switching model falls into the class of
the jump Markov linear models (JMLM) [38].

III. ESTIMATION OBJECTIVES

Let N (µ ,Σ) denote the Gaussian distribution with mean
µ and covariance Σ. With noise on the measurements and
inaccuracies in the fundamental diagram the system (4)–(5)
can be rewritten into the JMLM:

xk+1 = A(rk)xk +F(rk)vk +B(rk)uk + µ(rk), (6)

yk = C(rk)xk +G(rk)εk +D(rk)uk +ψ(rk), (7)

where vk ∼ N (0, I) and εk ∼ N (0, I) are i.i.d. Gaussian
sequences and {rs}s=1,...,k denotes a discrete time, time-
homogeneous, six-state first-order Markov chain with tran-

sition probabilities pm,n
def
= Pr{rk+1 = n|rk = m}, pm,n ≥ 0,

∑6
n=1 pm,n = 1, for each m∈S . Denote the initial probability

distribution as pm
def
= Pr{r1 = m}, for m ∈ S , such that

pm ≥ 0 for each m ∈ S and ∑6
m=1 pm = 1. We assume that

x0 ∼N (x̂0,P0), with x̂0 being the estimate of x0, P0 > 0, and
that x0, vk, and εk are mutually independent for all k. The
parameters pm, pmn, A(m), B(m), C(m), D(m), F(m), G(m),
x̂0, P0 are assumed to be known (for all m,n ∈ S ). Let R
denote the set of paths of the finite Markov chain {rs}s=1,...,k
of non-null prior probability.

Neither the continuous-state process {xs}s=1,...,k nor the
Markov chain process {rs}s=1,...,k are observed - instead, we
observe the noisy measurement process {ys}s=1,...,k.

Let y0:k
def
= {y0, . . . ,yk} , r0:k

def
= {r0, . . . , rk} , x0:k

def
=

{x0, . . . , xk} . Given the JMLM observations and assum-
ing that the model parameters are known, the Bayesian
deduction of the most probable modes and states de-
pends on the joint posterior distribution p(r0:k,x0:k|y0:k) =
p(x0:k|y0:k,r0:k)p(r0:k|y0:k).

We will consider the following two estimation problems:

(P1) Find the distribution p(rk,xk|y0:k).
(P2) Obtain the Minimum Mean Squared Error (MMSE) es-

timates of φk given by I(φk)
def
= Ep(rk,xk|y0:k)

(φk(rk,xk)) ,

where φk is an (rk,xk)-dependent mapping, typically
defined through the MMSE state estimates E(xk|y0:k)
and cov(xk|y0:k). Given r0:k, the Gaussian distribution
p(x0:k|y0:k,r0:k) and I(φk) can be computed using a Kalman
filter [22], [25]. In theory, p(r0:k|y0:k) could be computed
exactly, but this discrete distribution has an exponentially

growing number of values in time, thus some approxima-
tions/filtrations of unprobable states have to be made.

The problems (P1) and (P2) are known to be NP-hard [24].
The particle filtering is chosen to find a suboptimal solution
to the problems (P1) and (P2), as this method was already
successfully applied in state estimation problems for jump
Markov systems [22]–[26].

IV. PARTICLE-FILTERING BASED ESTIMATION METHOD

A. Basics

The estimation method used in this paper was introduced
in [23]. The goal is to estimate sequentially in time the un-
known states (xk,rk) and the series of posterior distributions
p(x0:k,r0:k|y0:k) [39].

If we were able to obtain N ≫ 1 i.i.d. samples (r
(i)
0:k,x

(i)
0:k),

i = 1, . . . ,N, distributed according to p(r0:k,x0:k|y0:k), then,
using the strong law of large numbers, MMSE estimates
could be computed by averaging, solving the state estimation
problem. However, obtaining such i.i.d. samples from the
posterior distribution p(r0:k,x0:k|y0:k) is not straightforward.
Therefore, alternative sampling schemes have to be used.

A solution to estimate p(r0:k,x0:k|y0:k) and I(φk) consists
in using the so-called importance sampling [40], which will
be explained in the following.

B. Importance sampling

Let us introduce an arbitrary proposal distribution
π(r0:k,x0:k|y0:k), from which it is easy to obtain samples, and
so that its support includes the support of p(r0:k,x0:k|y0:k),
i.e., p(r0:k,x0:k|y0:k) > 0 implies π(r0:k,x0:k|y0:k) > 0. Then

I(φk) =
Eπ(r0:k,x0:k|y0:k)

(φk(rk,xk)ς(r0:k|x0:k))

Eπ(r0:k,x0:k|y0:k) (ς(r0:k,x0:k))
,

with the importance weight ς(r0:k|x0:k) =
p(r0:k,x0:k|y0:k)/π (r0:k,x0:k|y0:k). If we have N i.i.d.

importance samples (r
(i)
0:k,x

(i)
0:k), distributed according to

π (r0:k,x0:k|y0:k) , then a Monte Carlo estimate of I(φk) is

Î1
N =

∑N
i=1 φk

(

r
(i)
k ,xk

)

ς
(

r
(i)
0:k,x

(i)
0:k

)

∑N
i=1 ς

(

r
(i)
0:k,x

(i)
0:k

) =
N

∑
i=1

ς̃
(i)
0:kφk

(

r
(i)
k ,x

(i)
k

)

,

with the normalized importance weights ς̃
(i)
0:k =

ς(r
(i)
0:k,x

(i)
0:k)/∑N

j=1 ς(r
( j)
0:k,x

j
0:k). Optimally, π(r0:k,x0:k|y0:k) =

p(r0:k,x0:k|y0:k), which would correspond to ς̃
(i)
0:k = N−1

for any i. For N finite, Î1
N(φk) is biased, but

asymptotically ÎN(φk) converges almost surely towards
I(φk). Under not very restrictive additional assumptions
[22], a central limit theorem also holds. In order
to be able to carry out a recursive evaluation
ς(r0:k) = ς(r0:k−1)ςk, the importance function should

satisfy π(r0:k|y0:k) = π(r0|y0:k)∏k
h=1 π(rh|y0:h,r0:h−1). The

incremental weight is then given by

ςk =
p(yk|y0:k−1,r0:k)p(rk|rk−1)

p(yk|y0:k−1)π (rk|y0:k,rk−1)
∝

p(yk|y0:k−1,r0:k)p(rk|rk−1)

π (rk|y0:k,rk−1)
,

where “∝” means “is proportional to”, and the normalized

incremental weight is then ς̃
(i)
k

def
=

[

∑N
j=1 ς

( j)
k

]−1

ς
(i)
k . The op-

timal sampling distribution satisfies p(rk = m|r0:k−1,y0:k) =
p(yk|y0:k−1,r0:k−1,rk = m)p(rk = m|rk−1)/p(yk|y0:k−1,r0:k−1)
and the associated importance weight ςk is proportional
to p(yk|y0:k−1,r0:k−1) = ∑6

m=1 p(yk|y0:k−1,r0:k−1,rk =



m) · p(rk = m|rk−1). Computing p(yk|y0:k−1,r0:k−1) requires
the evaluation of six one-step-ahead Kalman filter steps.

As the unconditional variance (i.e., with the observation
y0:k being interpreted as random variables) of the importance
weights ς(r0:k) increases over time [22], it is impossible to
avoid the degeneracy phenomenon. That is why we introduce
a selection step in the algorithm to discard the particles

r
(i)
0:k with low normalized importance weights ς̃(r

(i)
0:k) and to

multiply the ones with high ς̃(r
(i)
0:k). Each time a selection

step is used the weights are reset to N−1.

We want to obtain N particles {x
(i)
0:k,r

(i)
0:k} distributed

according to p(x0:k,r0:k|y0:k). At time k, we extend each

(x̃
(i)
0:k−1, r̃

(i)
0:k−1) by Ni ∈ N (∑i Ni = N) “children” (x

(i)
0:k,r

(i)
0:k)

according to the proposal distribution π to obtain N new

particles. Here x
(i)
0:k

def
= {x̃

(i)
0:k−1,x

(i)
k }, r

(i)
0:k

def
= {r̃

(i)
0:k−1,r

(i)
k }. If

Ni = 0, then r̃
(i)
0:k is discarded; otherwise, it has Ni “children”.

If we use a selection scheme at each time step, we have a

weighted distribution p̃N(r0:k|y0:k) = ∑N
i=1 ς̃

(i)
k δ

r̃
(i)
0:k

(dr0:k) .

We use the sampling importance resampling [27] as the
selection step. One samples N times from p̃N(r0:k|y0:k) to ob-

tain (r
(i)
0:k; i = 1, . . . ,N). This is equivalent to drawing jointly

(Ni; i = 1, . . . ,N) according to a multinomial distribution with

parameters N and ς̃
(i)
k .

C. The model implementation

For one step, the particle-filtering-based method reads as:

Initialization (time k−1)

given: N ∈ N
∗ random samples (r

(i)
0:k−1; i = 1, . . . ,N)

Step 1 (time k): Sequential Importance Sampling Step
for i = 1, . . . ,N

sample r̃
(i)
k ∼ π(rk|y0:k,r

(i)
0:k−1);

set r̃
(i)
0:k

def
=

(

r
(i)
0:k−1, r̃

(i)
k

)

;

end for;

for i = 1, . . . ,N
evaluate the importance weights up to
normalizing constant

ς
(i)
k ∝

p
(

yk |y0:k−1,r̃
(i)
0:k

)

p
(

r̃
(i)
k
|r̃

(i)
k−1

)

π
(

r̃
(i)
k
|y0:k ,r̃

(i)
0:k−1

) ;

end for;
for i = 1, . . . ,N

normalize the importance weights

ς̃
(i)
k =

[

∑N
j=1 ς

( j)
k

]−1

ς
(i)
k ;

end for;

Step 2 (time k): Selection Step

Copy/Discard particles (r̃
(i)
0:k; i = 1, . . . ,N) with respect

to high/low normalized importance weights ς̃
(i)
k to

obtain N particles

(

r
(i)
0:k; i = 1, . . . ,N

)

.

The complexity of this algorithm at each iteration is
O(N) [23].

V. CASE STUDIES

In this section we will empirically test whether in the
traffic density estimation for the freeway segment depicted
in Fig. 3 the CTM can be replaced by the linear switching
model derived in Section II-B. We will also validate the
model with the use of microsimulation. Finally, we will per-
form the particle filtering density estimation for the JMLM
proposed in Section II-D. Both model and algorithm were
implemented in Matlab.

A. Case study 1: Practical relevance of the proposed model

We consider the freeway segment depicted in Fig. 2, with
initial data v = vi = 150 [km/h], wi = w = 35 [km/h] (i ∈
{L,R,1,2,3,4}), ρmax = 250 [veh/km], ∆x = 0.5 [km], ∆ t =
10 [s]. The purpose of this case study is to observe whether
the considered system with noisy boundary conditions stays
within the set of possible modes S . Therefore, we will run
the CTM with various (but known) boundary traffic densities
and we will observe whether during the computations the
system does not deviate from behavior corresponding to
the modes from S . For computation of initial boundary
densities φL and φR we used real-time traffic flow and traffic
speed measurements from a three-lane segment of the D383
(Boulevard Laurent Bonnevay) freeway in Lyon on a working
day. One of these measurements - the downstream traffic flow
- is depicted in Fig. 4. We run the CTM 10000 times with
boundary densities set to ρL +εL, ρR +εR, εL,εR ∈N (0, I).
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Fig. 4. The traffic flow measured at the downstream boundary of the
considered freeway segment

We observed that for all tested scenarios the system modes
stayed within S . Additionally, the mode switches for two
consequent time steps follow the pattern depicted by the
finite automaton in Fig. 5. Here the double circle represents
possible finite mode, i.e., each of the modes can be the end
mode. The mode 1 is always initial state. From this case

2 4 6

531

Fig. 5. The representation of the mode switch dynamics by a finite
automaton

study we also computed the probability pm,n of the switch
from the mode n to the mode m. This probability will be
used as an input for Case study 3 (Section V-C).

B. Case study 2: Validation & performance of the proposed
model with respect to microsimulation

The next step was to validate the model parameters as well
as to compare the performance of the linear switching model
with respect to the performance of the traffic microsimulator
Aimsun 6. The network in Fig. 2 was considered, with ∆x =
0.5 [km] and ∆ t = 10 [s]. Before the computational part of
the experiment a one hour long warm-up took place. The
following parameters were adopted:

• main road mean traffic flow [veh/h]: 1270 for the first
three hours, 1000 for the fourth hour, 800 for the fifth
hour, 0 for the sixth hour,



• on-ramp mean traffic flow [veh/h]: 1000 for the first
three hours, 800 for the fourth hour, 600 for the fifth
hour, 0 for the sixth hour.

The default microsimulation road and vehicle parameters
of Aimsun 6 were used (see [17] for their values). From
the traffic densities and flows measured by the sensors the
fundamental diagram for each of the interfaces could be
reconstructed. The aim was to obtain a unified fundamental
diagram for whole segment. The parameters v and w were
computed by the L2-approximation of the collected data.
Subsequently the linear switching model was run, with the
boundary flows and the fundamental diagram obtained from
the microsimulation as inputs. The density results of the
linear switching model were compared to those obtained by
the traffic simulator Aimsun 6.

Fig. 6–7 show the comparison of the resulting traffic den-
sities of the linear switching model with the measurements
of the sensors within the microsimulator Aimsun 6.
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Fig. 6. Comparison of the traffic densities in the first (left) and the second
cell (right) computed by the linear switching model (black dots) with the
traffic densities measured by the sensors (red solid line)
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Fig. 7. Comparison of the traffic densities in the third (left) and the forth
cell (right) computed by the linear switching model (black dots) with the
traffic densities measured by the sensors (red solid line)

One can see that considering the inaccuracies caused
by the fundamental diagram approximation as well as the
inaccuracies caused by the use of a limited number of
possible modes the linear switching model performs quite
well, except for the density estimation in the first cell, where
the density is highly underestimated. The density obtained
by the linear switching model has a lower variance than the
density obtained by the microsimulation. We observed that
the mode switch during the experiment again followed the
behavior depicted by Fig. 5.

C. Case study 3: Particle filtering traffic density estimation

We performed the algorithm introduced in Section IV
using the JMLM that we derived in Section II, with the
network from Fig. 3. The parameters v, w, ρmax, ∆x, ∆ t,
were set as in Section V-C, initial pm,n was obtained in
Case study 1. The boundary data were simulated using the
traffic microsimulator Aimsun 6, computed from traffic flows
with means defined as φL, φR in Case study 1. The proposal

distribution π assigns equal probability to each of the states
for each time step and pm,n was computed as explained in
Case study 1.

In Fig. 8 and 9 one can see the results of the density
estimation for one of the cells with the number of the
sequences r0:k for each k restricted to N = 500 and to
N = 1000, respectively. The solid blue line represents the
real density, while the dotted red line represents the estimate
computed by particle filtering.
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Fig. 8. Estimation of ρ2 with N = 500 (left, red dotted line) with respect
to real ρ2 (left, blue solid line) and relative error of this estimation (right)
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Fig. 9. Estimation of ρ2 with N = 1000 (left, red dotted line) with respect
to the real ρ2 (left, blue solid line) and relative error of this estimation
(right)

The estimation results are very promising, if N is suffi-
ciently high, even without optimally chosen π. The compu-
tation time of the algorithm is proportional to N. However,
the algorithm can be run using parallel processing.

VI. DISCUSSION

A. Discussion about the chosen models

The characteristics of the CTM can be listed as follows:

- The model is nonlinear and, therefore, more complex
control/estimation measures are needed.

+ The model is identified automatically.

The characteristics of the JMLM can be listed as follows:

- The model restricts the possible congestion wavefront
behavior. This might have serious drawbacks when un-
expected behavior (e.g. accident) occurs in the network.

+ If the congestion status of the interfaces is known linear
control/estimation methods can be applied.

B. Discussion about the chosen method

- While for the proposed case study the computation time
is reasonable (in the range of minutes), for more general
networks the computation time may become high.

- It is a suboptimal method.
- It is necessary to know the transition probabilities as

well as initial probabilities of individual modes.
+ The method performs well even with biased boundary

data.
+ Extension of the set of modes does not change the

solution method.
+ The proposed algorithm can be parallelized [22]; this is

promising for online estimation.



VII. CONCLUSIONS & FUTURE RESEARCH

In this paper we have proposed a particle-filtering-based
method for traffic density estimation/prediction for Da-
ganzo’s cell transmission model-based jump Markov linear
system. The sampling importance resampling method was
used as the selection step.

We have focused on the system properties as well as on
the performance of the proposed estimation method, which
turned out to perform very well. As the proposed algorithm
can be parallelized, the proposed method seems to be a
promising tool for the real-time traffic density estimation.
Validation of this claim will be a topic for future work.

For the sake of simplicity all derivations and case studies
were done for a freeway segment without on-ramps and
off-ramps. Additionally, it was assumed that maximally one
congestion wavefront occurs in the segment and that the
congestion always proceeds upstream. Although for the case
study set-up this congestion behavior was verified for a
specific set of real input data, such assumptions do not
hold in general. Extension of the model to the one in
which all possible congestion modes that may occur are
included is straightforward. However, additional research
is needed to study possible improvements of the proposed
particle filtering method with respect to performance in time,
variance, etc., when applied to the more general problems.
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[11] K. Staňková, G. J. Olsder, and M. C. J. Bliemer, “Comparison of
different toll policies in the dynamic second-best optimal toll design
problem: Case study on a three-link network,” European Journal of
Transport and Infrastructure Research, vol. 9, no. 4, pp. 331–346,
2009.

[12] A. D. May, Traffic Flow Fundamentals. Upper Saddle River, NJ:
Prentice-Hall, Inc., 1990.

[13] M. Papageorgiou, C. Diakaki, V. Dinopoulou, A. Kotsialos, and
Y. Wang, “Review of road traffic control strategies,” Proceedings of
the IEEE, vol. 91, no. 12, pp. 2043–2067, 2003.

[14] J. K. Tugnait, “Adaptive estimation and identification for discrete sys-
tems with Markov jump parameters,” IEEE Transactions on Automatic
Control, vol. 27, no. 5, pp. 1054–1065, 1982.

[15] Y. Bar-Shalom, Multitarget-Multisensor Tracking: Principles & Tech-
niques. YBS Publishing, 1995.

[16] E. Mazor, A. Averbuck, Y. Bar-Shalom, and J. Dayan, “Interacting
multiple model methods in target tracking: A survey,” IEEE Transac-
tions on Aerospace and Electronic Systems, vol. 34, no. 1, pp. 103–
123, 1998.

[17] K. Staňková, “On traffic state estimation for an LWR-based highway
traffic model,” INRIA, Grenoble, France, Tech. Rep., February 2010.

[18] C. F. Daganzo, “The cell transmission model: A dynamic represen-
tation of highway traffic consistent with the hydrodynamic theory,”
Transportation Research B, vol. 28, no. 4, pp. 269–287, 1994.

[19] M. J. Lighthill and G. B. Whitham, “On kinematic waves II: A theory
of traffic flow on long crowded roads,” Proceedings of the Royal
Society of London. Series A, Mathematical and Physical Sciences,
vol. 229, no. 1178, pp. 317–345, 1955.

[20] P. I. Richards, “Shock Waves on the Highway,” Operations Research,
vol. 4, no. 1, pp. 42–51, 1956.

[21] G. Gomes, R. Horowitz, A. A. Kurzhanskiy, P. Varaiya, and J. Kwon,
“Behavior of the cell transmission model and effectiveness of ramp
metering,” Transportation Research C, vol. 16, pp. 485–513, 2008.

[22] A. Doucet, N. J. Gordon, and V. Krishnamurthy, “Particle filters for
state estimation of jump Markov linear systems,” IEEE Transactions
on Signal Processing, vol. 49, no. 3, pp. 613–624, 2001.

[23] A. Doucet and C. Andrieu, “Iterative algorithms for state estimation
of jump Markov linear systems,” IEEE Transactions on Signal Pro-
cessing, vol. 49, no. 6, pp. 1216–1227, 2001.

[24] M. S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, “A
tutorial on particle filters for online nonlinear/non-Gaussian Bayesian
tracking,” IEEE Transactions on Signal Processing, vol. 50, no. 2, pp.
174–188, 2002.

[25] B. Ristic, S. Arulampalam, and N. Gordon, Beyond the Kalman Filter:
Particle Filters for Tracking Applications. London, UK: Artech House
Publishers, 2004.

[26] H. Driessen and Y. Boers, “Efficient particle filter for jump Markov
nonlinear systems,” IEE Proceedings Radar, Sonar and Navigation,
vol. 152, no. 5, pp. 323–326, 2005.

[27] N. J. Gordon, D. J. Salmond, and A. F. M. Smith, “Novel approach to
nonlinear/non-Gaussian Bayesian state estimation,” IEE Proceedings
- Part F: Radar & Signal Processing, vol. 140, no. 2, pp. 107–113,
1993.

[28] N. J. Gordon, “A hybrid bootstrap filter for target tracking in clutter,”
IEEE Transactions on Aerospace and Electronic Systems, vol. 33,
no. 1, pp. 353–358, 1997.

[29] M. Khalaf-Allah, “Nonparametric Bayesian filtering for location esti-
mation, position tracking, and global localization of mobile terminals
in outdoor wireless environments,” EURASIP Journal on Advances in
Signal Processing, vol. 2008, 2008, article ID: 317252, 14 p.
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