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ABSTRACT. In this paper the optimal toll design problem as a dynamic game of Stack-
elberg type is investigated, with the road authority as a leader and drivers of the road network
as followers. The road authority tolls some of the links so as to minimize the total travel time
of the system, while the travelers choose their routes so as to minimize their perceived travel
costs.

Two types of problems are studied: The “classical” Stackelberg game with the road authority
imposing uniform or time-varying tolls, and, as a true extension, the so-called “inverse Stackel-
berg game” with the road authority setting tolls as functions of traffic flows in the network.

We formulate the dynamic optimal toll design problem with flow-dependent second-best
tolling, discuss its properties, and present a numerical solution of the problem. The neurosimula-
tor FAUN (Fast Approximation with Universal Neural Networks) is used to solve the minimizing
problem. The algorithm is presented on case studies with a small network.

In our case studies the flow-dependent tolling improved the system performance remarkably
even with a rather simple toll function. This suggests that the traffic-flow dependent toll is a
very promising tool for real applications.

Keywords: Road pricing, dynamic optimal toll design problem, logit-based stochastic user equi-
librium, dynamic traffic assignment, first-best tolling, second-best tolling, Stackelberg games,
inverse Stackelberg games, neural networks, FAUN.

INTRODUCTION & LITERATURE OVERVIEW

Traffic congestion has become a big problem, especially in heavily populated metropoli-
tan areas. With increasing occupancy of the road networks, the problem of congestion
becomes more and more actual. Common methods that are used to alleviate congestion
may be too expensive, difficult to apply, and not very efficient. When it is not easy to
apply the standard methods, traffic congestion can be reduced by imposing appropriate
tolls using a road pricing scheme.
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The idea of reducing congestion via appropriate tolls led to the introduction of the so-
called optimal toll design problem ([1, 2]). This optimal toll design problem is a problem
of the Stackelberg type ([3, 4]), applied to the traffic environment with a road authority
as a leader and travelers as followers. The aim of the road authority is to minimize its
objective function, which is dependent on the travelers’ decisions, by choosing optimal tolls
for a subset of links (so-called tollable links), while the travelers minimize their individual
travel costs. Their behavior is usually modeled by applying a traffic assignment ([5, 6]).

There are extensive studies focusing on the static optimal toll design problem, i.e., on
problems in which decisions of the players (travelers and the road authority) do not evolve
in time ([7, 1]). Although static models are still widely used, the theory and practice of
dynamic models have evolved significantly over the last ten years. In the dynamic version
of the optimal toll design problem the dynamic traffic assignment (DTA) applies ([8]).
DTA models typically describe route choice behavior of travelers on a transportation
network and the way in which traffic dynamically propagates through the network.

If the travelers are assumed to have perfect information, the deterministic user equi-
librium (DUE) applies ([9]), in both dynamic and static optimal toll design. Similarly,
with imperfect information, the stochastic user equilibrium (SUE) applies, for example as
a logit-based stochastic equilibrium (LB-SUE), see ([10]).

Considering possible tolling strategies there are two main research streams differing
in the definition of the set of tollable links. With so-called first-best tolling (or pricing)
all the links in the network can be tolled ([1, 11]), with so-called second-best tolling not
all links are tollable ([7]). The latter concept is clearly more applicable in practice.

Following extensive case studies of two-route congestion problems in static networks
([12, 13, 14]) we have introduced its second-best variant, where the link tolls are functions
of link and route flows in the network, for only a proper subset of all links. This fits
within a theoretical framework of “inverse Stackelberg problems” ([15, 16]).

This paper introduces an extension of our recent research to dynamic problems with
SUE. Although some authors (e.g., [17, 18]) consider the step-wise second-best tolling,
to the best of our knowledge no research dealing with the optimal toll design problem
with the second-best tolling, the travelers driven by LB-SUE, and the aim to find optimal
toll defined as a function of the traffic lows in the network has been done before. Since
the problem is NP-hard, advanced optimization techniques, which can be parallelized,
should be used in order to speed up the solution process. In this paper an algorithm
using neural networks is introduced as such an optimization technique. Neurosimulation
is usually based on complete software emulation, i.e., inputs, outputs, neurons, synapses
and weights are implemented in software. The FAUN (Fast Approximation with Uni-
versal Neural networks) neurosimulator enables supervised learning with artificial neural
networks (ANN). A well trained ANN is a mathematical function which approximates the
output of the input-output sample patterns reasonably (generalization). Here the word
“reasonable” summarizes different quality factors for the trained ANN, i.e., the mathe-
matical function. The neurosimulator FAUN has already been employed to solve other



problems in the domain of dynamic games, see, e.g., [19, 20, 21].

The contributions of the paper can be listed as follows:

e The dynamic second-best optimal toll design problem with the traffic-low dependent
tolling is formulated. Up to now flow-dependent tolling appeared in static networks,
in heuristic studies, or with the first-best pricing only.

e An algorithm solving the problem using neural networks is introduced and presented
on a small case study. This algorithm is applicable on general networks.

e This problem is also a new application of the neurosimulator FAUN.

e We show that the flow-dependent tolling can never be worse than the flow-independent
one.

INVERSE STACKELBERG GAMES

In this section a basic concept of inverse Stackelberg games with one leader and one
follower will be introduced. For more information about (inverse) Stackelberg games we
refer to [16, 22].

Let us consider two players, which we call leader and follower. The leader has decision
variable ur, € Dy, C R, while the follower has decision variable ugp € Dp C R, where Dy,
and D are decision spaces of the leader and the follower, respectively. The leader and
the follower have the real-valued cost functions

Ju(ur, ur),  Jr(ur,ur),

respectively. We assume that Jp(up,ur), Jr(up,ur), D, and Dg are known to both
players.

Each player chooses her own decision variable in such a way as to minimize her own
cost function. Some well-known equilibrium concepts, such as the Stackelberg equilibrium
concept ([3]), can be used to define a solution. Another equilibrium concept, to be dealt
with now, is the inverse Stackelberg equilibrium, discussed in, e.g., [15]. The leader does
not announce the scalar uy,, as above, but a “decision rule” given by the function pr () :
DF — DL-

Given the function pr(-), the follower will make her optimal choice uj; according to

up = arg min Jr(pr(ur), up).
upE€Dp

The leader, before announcing her pp(+), will realize how the follower will play and she
can exploit this knowledge in order to choose the best possible pp-function, such that
ultimately her own cost function [Ji, is minimized. Symbolically, we could write

pL() = argmin Ji (pr (up (p.())), up (P ()

pL



In this way one enters the realm of composed functions ([23]), which is known to be a
notoriously complex area. From here onward it turns out to be difficult to proceed in an
analytic way. However, there is a trick that often works, as shown in Example 2 in [24].
This trick helps the leader to reach the team minimum.

In a Stackelberg setting, the leader acts first and subsequently the follower acts. In
an inverse Stackelberg setting, however, while the leader announces her “decision rule”,
the follower acts first and the leader acts second. A Stackelberg game is a special case of
an inverse Stackelberg game with pp(-) chosen as a constant value.

THE OPTIMAL TOLL DESIGN PROBLEM

In this section the dynamic optimal toll design problem is introduced. Under certain
conditions, which will be explain in this section, this problem belongs to the class of ISG.

Preliminaries

Let G(N, A) be a road network defined by a finite nonempty set of nodes N and a finite
nonempty set of links A. Let R C N and S C N be finite nonempty sets of origin nodes
(origins) and destination nodes (destinations), respectively, and let RS € N x N be a
subset of origin-destination pairs. For each origin-destination pair (r,s) € RS, where r
is the origin and s is the destination, there is a travel demand d"** € R, [veh/h] on
the rate of travelers departing during k-th time interval from origin r to destination s.
The network is assumed to be strongly connected, i.e., at least one route connects each
(r, s)-pair. For each directed arc a € A the following parameters are initially given: link
length s, [km], maximum speed 9% [km/h], minimum speed 9™ [km /h], critical speed
Yt [km/h], jam density J7*™ [pcu!/km], and the unrestricted link capacity C, [pcu/h].
Dynamic link travel time for an individual user entering link a during k-th time interval
(k € K) is defined as

L def Sq
To = (1)
a 19157

where the link speed 9% [km/h] is defined as Smulders speed-density function (see [25]):

,lgcrit_,lgmax k . k it

max a a cri

ﬁa + TJ‘“ if Ja S Ja y

ﬁk d:ef Jjam ,lgcrit ﬁmin E_J,’;”” if Jcrit < Jk < Jjam (2)
a a + ( a  Ya ) T T 1 a =Ya =Ya >

Jgrit _Jgam
ok gk > Jio,
with critical density J& [pcu/km] defined as J¢* o 2o Dynamic link cost as expe-
rienced by a single traveler entering link a € A during k-th time interval is defined as

Ipassenger car units



cr o atk 4+ oF, (3)
where « is the traveler’s value of time [M/h] and 6% [M] is toll that a single traveler pays
when entering link a during k-th time interval. The dynamic link travel times, tolls, and
costs are additive, i.e.,

EED ISR 3D ST LAES ) S LT

a€A k'€ a€EAK'ek a€Ak'ek
Here 5%“' is a dynamic route-link incidence indicator, equal to one if drivers traveling
over path p € P and departing during k th time interval k € K reach link a during k’-th
time interval and zero otherwise, and 7' , TR, «9k 0%, ck ¥ are dynamic route travel time
for travelers entering route p € P durlng k th time mterval dynamic link travel time
entering link a during k-th time interval, dynamic route toll for travelers entering route
p € P during k-th time interval, dynamic link toll for travelers entering link a during
k-th time interval, dynamic route cost for the travelers entering route p during k-th time
interval, and dynamic link cost for travelers entering link a during k-th time interval,
respectively. Dynamic link flow rates are additive with respect to dynamic route flow
rates, i.e.,

=2 Aty (5)

acAk'ek

where ¢* [veh/h] is a dynamic link flow rate of travelers entering link a during the k-th
interval and fZ’f' [veh/h] is a dynamic route flow rate of travelers entering route p during the
E'-th time interval. For all (r,s) € RS, p € P"*), and k € K, the feasibility condition on

route flows has to be satisfied, i.e., vector of route flow rates f*)F = (fl(r’s)’k, e féi}?;’f&
belongs to the set Q*)* defined as

r,s),k def ! 7,5 . 7,5
Q(,),k = (x17"'7x|79(7‘,5)|> : Z xi:d(7)7k7 332207 VZE{]'??’P(’)l}
ie{1,..[Pro)[}

(6)

From (5) and (6) it follows that also link flows are feasible, i.e., vector of link flows
!/
qtk = (qf, e ,q|kA|> belongs to set of feasible link flows Q** defined as

QM ma) e = 30 DAL Yae {l A g (@)

aef{l,...|A[} K€k



The link dynamics is defined by the Dynamic Network Loading (DNL) model. The DNL
model is formulated as a system of equations expressing link dynamics, flow conservation,
flow propagation, and boundary constraints. The DNL model is adopted from [26] and is
not further discussed here.

Drivers minimize their perceived travel costs. We assume that in equilibrium state no
traveler can minimize her perceived travel costs by unilateral change of her route. This
fits within the framework of dynamic stochastic user equilibrium model (see [27, 10]).

Problem formulation

In the inverse Stackelberg setting we, as the road authority, set tolls on so-called tollable
links 7 C A as mappings of traffic flows in the network so as to minimize the total travel
time of the system. We assume that these tolls are twice continuously differentiable
functions of the link flows. For each time interval the road authority sets the vector of the

link tolls ©F = (G’f(), o ,<9|’“A|(~)> , 0%() - QM — R, in such a way so as to minimize
the total travel time of the system. Trivially, the minimization of the total travel time

Z Z Z Tp(r,s),k . flgr,s),k

k€K (r,5)ERS p(r:5) eP(1:9)

is equivalent to the minimization of congestion in the network.
Let matrix © be a matrix of toll functions set by the road authority on each link for
each time interval, i.e.,

el 01() . Oy()
G : =« - ] (8)
o) () e )
where for each k € K and a € A
95(){ =0, if a€ A\T, (9)

> 0, otherwise.

The main problem solved in this paper can be defined as follows:

(P) Find

O* — arg m@mZ Z Z Tp('r,s),k . fp('r,s),k

kel (r,s)ERS peP(r:s)

subject to DNL, (1) - (5), LB-SUE, (9), while the link and route flows have to be feasible.
Remarks:
The total travel time is clearly nonlinear function of the link flows in the network. The



problem (P) is a member of the class called bilevel programming problems. In [28] it was
shown that even the linear bilevel programming problems (with linear objective functions)
are NP-hard. Furthermore, in [29] it is shown that the linear bilevel programming problems
are strongly NP-hard. From this it follows that the problem (P) is strongly NP-hard, too.
This observation justifies the use of heurictic methods for solving (P), like the neural
network approach proposed in this paper. Please note that the problem of finding the
uniform toll or time-varying toll is clearly a special case of (P).

NEUROSIMULATION

In this section the application of the neurosimulator Faun in solving the problem (P)
will be introduced. In the following text the concept of supervision learning will be first
introduced, followed by introduction of neurosimulator Faun.

Supervised Learning

Let function g : R™ — R™ assign to each vector x; € R™ a vector y; € R™ ie.,y; = g (X;).
We will refer to the pair (x;,y;) as to the i-th pattern of the function g. The vector x; will
be called the input vector (of ¢g) and the vector y; will be called the output vector (of g).

Supervised learning constitutes one way of how to find the function g given a set of o
patterns (see [30]). It is of a special interest when other methods like regression methods
do not lead to satisfactory results.

An artificial neural network (ANN) can be thought of as a simple mathematical formula
with parameters called weights (see [30] for details). The result of supervised learning is
an approximation function g¢,,, with an appropriately chosen vector of weights w. The
goal of supervised learning with ANN is therefore to find a function g,p, : R® — R™,
which is approximating the function g in the best way. Moreover, it is required that gapp
has derivatives of all finite orders in the components of x.

There are several criteria that can be used to validate whether the function g,pp is
“close enough” to g. In our approach the so-called validation error for every pattern (x;,
vi), i =1,2,..., 0, has to be minimal.

The set of o patterns is divided into a set of ¢ training patterns and a set of o — ¢
validation patterns. For a given vector of weights w the training and the validation errors
are calculated with the error functions

=1 k=1 (10)

where gappr and y; i, k= 1,2,...,m, refer to the k-th entry of g.,, and y,, respectively.
The weights of w are optimized only for the ¢ training patterns, while the validation
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patterns are used to prevent overtraining. Roughly said: When the training error
becomes small with respect to w , but the validation error ¢, grows, the ANN learns the
patterns “by heart” and looses its interpolation and extrapolation abilities.

An ANN is trained iteratively, i.e., g; is decreased by adaption of w, until ¢, increases
for two consecutive iterations (prevention of overtraining). Note that the training stops
before a local minimum of ¢, is reached. Weight upgrades wi*" 1 —wi*" can be calculated
with any minimization algorithm, e.g., a first derivative method such as the steepest
descent, or a second derivative method such as the Newton’s method. For first derivative

methods we have the iterative sequence
Witer—|—1 — Witer + 7] (Et (Witer) ,gradwét (Wz'ter)) AW (é‘t(Witer), gradw& (Witer)) 7 (11)

with the search direction Aw and with step length 7. Numerical methods for constrained
nonlinear least-squares problems (see [31]) are sequential quadratic programming (SQP)
methods and generalized Gauss-Newton (GGN) methods, which can exploit the special
structure of the Hessian matrix of e; (see [32], [33], [34]). It turns out that in practice
SQP and GGN methods can automatically overcome most of the training problems of
ANN such as flat spots or steep canyons of the error function ;. Advantages of these
methods are:

e A much better search direction Aw is calculated in comparison to common training
methods, e.g., Aw := grad,e; for the gradient method (back propagation).

e The step length 7 is optimized permanently in contrast to common training methods
with fixed step length. The number of learning steps is reduced significantly.

e Only ¢, grade;, and ¢, are required which mainly can be computed by very fast
matrix operations. For other ANN topologies, e.g., radial basis functions, an efficient
code for grad,e; can also be deduced by automatic differentiation.

e Maximum and minimum of each weight can be set easily (box constraints).

e The total curvature of the ANN can be constrained (prevention from ANN oscilla-
tions).

e Convexity and monotonicity constraints can be set.

Neurosimulator FAUN

There are many commercial and public domain (freeware and shareware) neurosimula-
tors, e.g., SNNS, MemBrain, or FANN. The neurosimulator FAUN is portable on Unix,
Windows, and other operating systems. The training and learning algorithms of FAUN
are based on well-known numerical methods for constrained optimization problems and
nonlinear least-squares problems. FAUN has fully automatic prevention from overlearn-
ing (adaptable drop out rule). FAUN has an implementation on parallel, vector, and grid
computers. FAUN synthesizes functions from high-dimensional input-/output-relations.
The architecture of the neurosimular FAUN is shown in Figure 1.

More detailed information about the neurosimulator Faun can be found, e.g., in [30]
and [35].
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Figure 1: 3-layer architecture of the FAUN software suite. Users choose between local
installation (1) or web front-end to access FAUN (2). The middleware distributes tasks
user-definable to the FAUN compute kernel on one (2a) ore many microprocessors (2b and
2¢). Applications of every layer are independently replaceable and available for Windows
and Linux.

SOLUTION OF THE DYNAMIC OPTIMAL TOLL
DESIGN PROBLEM

In this section a heuristic algorithm for finding the solution of (P) is presented. Since
Stackelberg games can be viewed as a subset of inverse Stackelberg games, we can compare
both approaches using the same algorithm that we use for solving the game in the ISG
setting.

Although the matrix of toll functions © defined in (8) can in general consist of any
twice continuously differentiable functions of actual traffic flows, in the case studies we



will restrict ourselves to linear functions of link volumes, i.e., with © defined as follows:

max ('yl—l+5 0) ... max <7|A|S:AI'+5|A|,O>
o« : : Y 0s R, (12)

max (fyllqusll 5'1’C|,O> max( 'A"yllﬁ: 5||§||,O>

where z* is the number of travelers present on link a at the begining of the k-th time
interval (link volume) and s, is the length of link a.
We assume that there exist Vimin, Omin, Vmax, Omax € R such that

“Ymin S ’Yf S Ymax 5min S 52 S 6max7 vk S IC,\V/CL S Au (13)
and that the condition (9) is satisfied.
The algorithm consists of following parts:

e Computing sample points of the total travel time function

— Outer loop - grid search
— Inner loop - dynamic traffic assignment

e Application of FAUN 1.1 simulator

— Training of the neural networks and choosing the most suitable candidate
— Minimizing the function given by the chosen neural network

In the following subsections we will describe individual parts of the solution process.

Computing sample points of the total travel time function

This algorithm has two built-in optimization procedures: outer loop and inner loop. Let
n € N and m € N be given. Let us define sets N, M, and SVM as follows:

Ymax — Ymin
N é {’Ymim “Ymin + Ta s 7’Ymax} ) (]-4)
5max - 5min
M A {&mm i + ,5max} , (15)
SVMESLQ v ke N, VoF e M satisfying (9) and (13)}. (16)

The set SMM will be called the set of admissible toll matrices.

In the outer loop of the algorithm the grid search is applied. In each step of the outer
algorithm an element of S™™ is randomly selected and used as an input for the inner
loop. By this way a “grid” of sample points of the total travel time is created.

In the inner loop the dynamic traffic assignment including dynamic route choice model,
aiming to determine a stochastic dynamic user-equilibrium based on the actual travel

10



costs, is applied. The dynamic link parameters are recomputed using the Dynamic network
loading ([26]). The DNL model is the heart of the DTA model and is also the most
computationally intensive part. To compute new route flow rates in each iteration the
method of successive averages (MSA) is adopted on the route flow level (see [5, 24]). The
convergence of the inner loop is verified using so-called relative dynamic duality gap €
defined as

r,s),k,iter r iter r,s),k,iter
ftor _ 2r9)eRS 2upr) Pt (C’(’ ) b ) i )k 17
‘ a Z(r s)ERS m(rs) (i) . ( )

Here m(ms)kiter ig the minimal route travel cost for travelers departing from origin 7 to
destination s during the k-th time interval as computed in the iteration iter. If the relative
duality gaps of two consecutive iterations are close enough, i.e., if [ — 71 < ¢y
with a given small positive number €,,.,, the algorithm is terminated.

Pseudocode for computing sample points of the total travel time function

Step 1 (Initialization)
Download the network G(N, A), define K, RS, P("*), T, travel demands, epax (13> €max > 0);
define i, n, m, N, M, SNM  set TTTyin high;,
Define €', €%, such that |¢! — €®| > emax, set network empty.
Step 2 (Outer loop)
for all N, M, © € SNM do
iter:=0;
Step 3 (Inner loop)(Dynamic traffic assignment)
iter:=iter+1;
while |ete” — etter=1] > ¢ .. do for all k € K
Step 3a) Compute dynamic link costs from (3) and dynamic route costs from (4);
Step 3b) Determine the route choices of travelers for each k € K;
Step 3c¢) Update dynamic route flows using MSA;
Step 3d) Perform DNL to obtain dynamic link flows;
end do;
Compute the total travel time function TTT corresponding to O;
if TTT < TTTmin;
TTTwin :=TTT;
0* .= 0;
end if;
end do;
Return TTT i, ©7F;

Remarks 1. The minimization of the total travel time does not need to be done in this

stage of computation, but it is useful for future comparison of results computed by neural
networks and grid search, respectively.
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Application of FAUN 1.1 simulator

The grid search produces the value of the total travel time function at discrete positions
in the parameter space. The ANN approach serves two purposes: first, the grid search
is relatively time consuming. It would be nice to have an instantly evaluable function.
Second, for every not calculated position in the parameter space the algorithm has to
be recomputed. Again, it would speed up the analysis, if the total travel time could
be computed for arbitrary values of the parameter space. This leads to the following
algorithm.

Pseudocode for applying ANN to the total travel time function

Step 1 (Initialization)
Prepare the grid search data for use with FAUN by splitting input and output;
Set appropriate scaling parameters for the data;
Set number of ANN to train successfully 7,,,;
Set appropriate worst accepted validation quality;
Prepare FAUN for parallel computation.
Step 2 (FAUN training)(Finding appropriate ANN)
do n,n,-times in parallel;
Select random w;
while €, in (10) does not grow for two consecutive steps do
reduce g, in (10) by following the gradient descent on w in (11);
end while
if e, is acceptable
return and save w;
else if
reinitialize w;
end if
end do
Step 3 (Postprocessing)
Export the best ANN using w;
Minimize the ANN;
Return the minimal w and T7T7T 1,in.

The grid search is applied on the neighborhood of the coordinates in which the minimum
of the total travel time is reached to check whether the outcome of the algorithm is
appropriate.

CASE STUDIES

In this section case studies with the Chen network consisting of 6 links, 2 origin-destination
pairs, and 6 routes will be investigated (depicted in Figure 2). The Chen network was
chosen for its simplicity and also because all important phenomena appearing in more
complex networks can be seen in the Chen network, too [36]. Only link 1 is tollable, the
toll is defined by (12).

12
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Figure 2: Chen network
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Figure 3: Plot and map of the objective function of a static problem with toll set to
a* +b.
S1

To have an impression of what the shape of the objective function, in Figure 3 the
objective function of the static problem and with toll defined by (12) as ¢; = a - ¢; + b,
a,b € R, ; > 0 is depicted. Here the points of the total travel time function were
computed using grid search.

Case study 1

Four time intervals are considered, i.e., K = {1,2,3,4}. The link properties and the travel
demands are depicted in Table 1. The other parameters are set as: p = 0.2, ¢ = 0.05,
a=8M/h, v = —10, Opin = =5, Ymax = 10, dpax = 5.

The algorithm introduced in the previous section was applied, with 33620 training
data, 13297 validation data, and worst accepted validation quality equal to 1.1. Sixteen
microprocessors were used to compute the problem in a parallel way. The neural network
function that interpolates the total travel time function the best (with validation error
1.5%) has multiple local minima and one global minimum. The minimum 1.4173 - 10*
hours at [y{, o1, 77, 82, 73, 63, 41, 8] = [-0.50,0.20,—0.03, 1.19,0,0,—0.04, 3.96] was

13



a S ﬂ;nax 19grit ﬂgun Jgam Ca

1]75]150 |90 20 50 1500

215 | 120 | 70 10 150 | 3500 (r,s) | ds)01 [ qms)2 [ q(re)3 [ glrs).d
3115 | 120 | 70 10 150 | 3500 (1,5) | 2000 | 8000 | 8000 | 3000
4110 | 150 | 90 20 50 1500 (3,5) | 1000 | 1500 | 2000 | 1500
5|15 | 120 | 70 10 150 | 3500 (b)

6|15 | 120 | 70 10 150 | 3500

(a)

Table 1: Link properties and travel demands in case study 1.

(1,.7 S) d(r,s),l d(r,s),Q d(r,s),?) d(r,s),4 d(r,s),B d(r,s),ﬁ d(r,s),? d(r,s),8
(1,5) | 2000 4000 6000 8000 8000 6000 4000 2000
(3,5) | 1000 2000 3000 4000 4000 3000 2000 1000

Table 2: Travel demands - case study 2

easily found using the Matlab optimization toolbox. Note that for the first and forth
interval the optimal toll is decreasing with the current traffic volume.

With no toll the total travel time reaches 1.9542-10*, the optimal uniform toll is 8.4 W
and yields a total travel time of 1.7844 - 10* hours.

The computational time of the FAUN simulator was 147676.4 seconds, with the use
of 16 microprocessors. However, with a sufficient number of microprocessors the Faun
simulator can solve the problem in real time. The most computationally intensive part
is the grid search. It takes several hours to compute the sample points. This part of the
solution approach can be also run in a parallel way, though.

Case study 2

In this case study the number of time intervals will be increased to 8, with travel de-
mands depicted in Table 2. Also, there are no boundaries on parameters of linear
toll functions and only 14122 training samples and 9301 validation samples were used.
Worst accepted validation quality was set to 1.1. The best-trained neural network (with
validation error 2.5 %) was minimized using Matlab. This function has multiple lo-
cal minima, and a unique global minimum 29149.00 at [yi, 1, ~2, 02,43, 83,41, 01,73, 63,
78,88 AT 6T 48, 68] = [-0.02,2.62, —0.04, 3.20, 0.4, —0.93, 0.01, —1.32, 0.01, 0.99, 0.05, 0.40,
0,0,0.02, —0.24].

Optimal toll decreasing with the current traffic volume appears in the first time interval
and in the second time interval. With no toll the total travel time reaches 39659.20 hours.
The optimal uniform toll is 11.2 B and yields a total travel time of 34822.60 hours.

The traffic-flow dependent tolling brought improvement of the total travel time func-
tion. The computational time of the FAUN simulator was 1131310 seconds, with the use
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of 16 microprocessors.

Discussion

In both case studies the traffic-flow dependent toll brought better results than the traffic-
flow invariant toll. The algorithm can be applied to bigger networks in real time, provided
that the grid search will be parallelized and that more microprocessors will be used.

CONCLUSIONS & FUTURE RESEARCH

In this paper application of Stackelberg and inverse Stackelberg games to the dynamic
optimal toll design problem was investigated. The problem was solved with the use of Neu-
rosimulator 1.1. The obtained results suggest that application of traffic-flow-dependent
tolling can improve the performance of a traffic system remarkably.

Although with the use of neural networks the computations are rather fast, it is still
necessary to speed them up when applying in real-time problems. The computations can
be parallelized to achieve faster results, even the real-time computations are possible if
many microprocessors would be used. Possible application of our approach to large-scale
problems is being investigated.

In our model the travel demand was assumed fixed. Our future research focuses on
extension of our existing model to the cases with elastic demand, as well.
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