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Abstract

In this paper, the dynamic optimal toll design problem is considered as a one-leader-
more-followers hierarchical non-cooperative game. On a given network the road au-
thority as the leader tolls some links in the network to minimize the total travel time
of the system, while travelers as followers are assumed to be driven by the dynamic
route choice equilibrium assignment. So far toll has always been considered as con-
stant or time-varying. Inspired by San Diego’s Interstate 15 congestion pricing project,
in which heuristics with toll proportional to traffic flow are applied on a real two-link
highway network, we construe toll as proportional to traffic flows in the network. If toll

is set either as constant or time-varying, the dynamic optimal toll design problem can
be treated as a Stackelberg game; if toll is set as a function of the traffic flows in the
network, the problem can be treated as an inverse Stackelberg game.

On a simple two-link network we investigate various tolling concepts, representing both
Stackelberg and inverse Stackelberg games.

We show that the use of flow-dependent toll can improve system performance better
than the use of either constant or time-varying toll, provided that the tolling scheme is
chosen properly.

Keywords

Road pricing, dynamic optimal toll design problem, Stackelberg games, inverse
Stackelberg games
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1 Introduction

Road pricing is one of the most efficient methods to avoid congestion problems on
road networks (Verhoef (2002a), A. D. May (2000)). With the use of appropriate tolls
the road authority can force travelers to behave so as to improve the performance of a
given traffic system. This led to the introduction of the so-called Optimal Toll Design
Problem.

Some researchers have attempted to solve the problem by means of a game-theoretic
approach, in which the game is of a Stackelberg type (e.g. Verhoef (2002b), Joksimovi

et al. (2004), Chan & Lam (2005)). However, these approaches consider toll as inde-
pendent of link and route traffic flow, while it seems to be reasonable to introduce toll
as proportional to traffic flow.

This is why we construed (Sikova et al. (2006b)) the static optimal toll design prob-
lem as an inverse Stackelberg game (Olsder (2005)), where the link tolls are functions
of link or route traffic flows in the network. We considered travelers driven by the deter-
ministic user equilibrium and solved the problem analytically. We proved that with the
static optimal toll design problem defined on a two-link network there exists an inverse
Stackelberg strategy ensuring a better outcome for the road authority than with the stan-
dard Stackelberg strategy. In 8kava et al. (2006a) we applied an inverse Stackelberg
game to a dynamic optimal toll design problem with very simple tolling schemes.

This approach is inspired by San Diego’s Interstate 15 congestion pricing project (Su-
pernak et al. (2002)), in which the two-link highway network was studied. One of the
links was tolled according to network occupancy and toll was established in a heuristic
manner. We consider case studies with a two-link network as well, the problem now
being dynamic. The aim of the road authority is to minimize the total travel time of
the network by tolling one of the links, whereas travelers choose a link so as to mini-
mize their travel costs. As a reference case of the dynamic optimal toll design problem
we take Stackelberg games with toll being constant and time-varying, respectively. We
analytically compute the results of inverse Stackelberg games differing in the tolling
schemes used and compare them with the results of the reference cases. We discuss
whether the inverse Stackelberg approach defining toll as being a function of traffic
flows leads to a better outcome for the road authority than the Stackelberg approach
with toll being either constant or time-varying.

Finding an optimal toll as a function of traffic flows in the network will help solve the
congestion problems by road pricing more efficiently.

The content of the paper is as follows: In Section 2 we briefly introduce Stackelberg
and inverse Stackelberg game schemes with a clear emphasis on the not-so-well-known
inverse Stackelberg games. In Section 3 the dynamic bilevel optimal design problem is
defined as a Stackelberg and inverse Stackelberg game, respectively. In Section 4 we
analytically solve the case studies on a small network. In the considered function spaces
the best possible link toll functions for the road authority are found and the results of
these games compared with the ones of a traditional Stackelberg game with constant or
time-varying toll. The obtained results and possibilities of future research are discussed
in Section 5.
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2  Stackelberg and Inverse Stackelberg Equilibria and
Terminology
In this section we introduce the basic concept of Stackelberg game (SG) and inverse

Stackelberg game (ISG), in Section 2.1 for one-leader-one-follower games and in Sec-
tion 2.2 for one-leader-more-followers games.

2.1 One Leader - One Follower

In its simplest form, there are two players, called leadgrand follower (F), respec-
tively, either having his own cost function,

j[,(uﬁy U]-'), j}-(uﬁa U’.’F)a

whereu,,u, € R areL’s andF’s decision variables, respectively. Either player wants

to choose his own decision variable in such a way as to minimize his own cost function.
Without stating an equilibrium concept, the problem as stated so far is not well defined.
Such an equilibrium concept could, for instance, be one named after Nash or Pareto
(Basar & Olsder (1999)).

2.1.1 Stackelberg Game

According to the Stackelberg equilibrium concé&pbannounces his decisiary, which
is subsequently made knownfa With this knowledgeF chooses his». Henceur
becomes a function af,, written asur = [#(u,), determined by the relation

min Jr(uz, ur) = Jr(ug, lx(ug)). (2)

ur

It is assumed that this minimum exists and that it is unique for each possible choice
uz by the leader. Before the leader announces his decisiphe will realize how the
follower will react and hence the leader will choose, and subsequently annoyrse,

as to minimize7;(u,, lp(uz)).

Example 1

Supposey; (ug, ur) = (ur —5)2 +u, Jr(ug, ur) = u+ux—usuz. The reaction
curvelr is given byur = %uﬁ and hence:, will be chosen so as to minimize

1 2
(§UL - 5) + uZ,

which immediately results in; = 2. With this decision by the leader the follower will
chooseur = 1. The costs for the players are given by 20 and 3, respectively.

2.1.2 Inverse Stackelberg Game

Another equilibrium concept, to be dealt with now, is theerse Stackelberg equilib-
rium as introduced in (Olsder (2005)). The leader does not announce the ggalar
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as above, but a functiofi;(-) which mapsur into u,.. Given the functiony.(-), the
follower will make his choice:» according to

uy = arg min Tr(v(ur), ur).

Optimal quantities will be flagged by an asterisk. The leader, before announcing his
vz (+), will of course realize how the follower will play and he should exploit this knowl-
edge in order to choose the best possipfenction, such that, ultimately, his own cost
function 7, becomes as small as possible. Symbolically we could write

7e() = argmin T (yr (ur(12())), uz(72 ().

In this way one enters the field of composed functions, which is known to be a notori-
ously complex area. From here onward it turns out to be diffult to proceed in an analytic
way. However, the following example shows a trick that often works.

Example 2

Suppose the cost functions are those of Example 1. If both the follower and the leader
would be so kind as to minimiz&: (u., ur), the follower totally disregarding his own

cost function, the leader would obtain his so-caltedm minimumi.e., 7.(0,5) = 0.

Now the leader should choose the cutve= ~.(ux) in such a way that the minimum

urs = 0, ur = 5 lies on this curve and such that this curve does not have other points
in common with the set

Tr(ug, ur) = U% + u2f —upur < Jr(0,5) = 25.

An example of such a curveig = 2ur — 10. With this choice by the leader, the best
for the follower to do is to minimize

Tr(2ur — 10,uz),

which leads taur = 5. Henceu, = 0 and, to our surprise, the leader has obtained
his team minimum in spite of the fact that the follower minimized his own cost function
(however, subject to the constraimt = v, (uz) = 2uzr — 10).

Other examples exist in which the leader cannot obtain his team minimum, and such
problems are harder to deal with as exemplified by the following example.

Example 3

This is a continuation of Example 2. We add the constraits< u, < 43 and
—5 < ur < 7 which the two players must obey. The worst that can happen to the
follower is characterized byin, , max,, J» which is realized four = -2, uy, = —4
resulting inJ7z(—4, —2) = 12. Consider the team problem

min J, subject to Jr < Jr(—4,—-2) = 12.

UL, UF
The calculation to find this solution, though straightforward, does not lead to a "nice”
answer. The solution will simply be indicated b&, u} An optimal choice for the
leader is ;

- ] =4 for =5 <ur <up-—ce,

uc—’yf—{ uz foru}—eﬁu;ﬁ?,
wheree is an arbitrarily small positive number. The quantitypeing greater than zero
makes the solution unique;= 0 would lead to a non-unique response by the follower.
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2.2 More Followers

In Section 2.1 we introduced the basic concept of ISG and SG. Since in the dynamic op-
timal toll design problem we deal with one-leader-more-followers cases of the games,
this section deals with an extension of Section 2.1 to a situation with more followers.
Let us assume now a noncooperative game withleader(£) andm € N followers
(Fi,...,Fm) (m € N, m > 2).! The leader has decision variables, ..., u%: € R"

(n € N) and thei-th follower F; (i € {1,...,m}) has the decision variabler, €

R. We will denote vector(u},...,u}) € R™ by u.. The leader has the cost func-
tion J.(us, ur) with g = (ug, ..., (ug,...ux,), eachF; has the cost function

Jr, (uc,ugr). Each player wants to minimize his own cost function.

2.2.1 Stackelberg Game

According to the Stackelberg equilibrium conceptannounces his decisions. €

R", which are subsequently made known to the followers. With this knowledge, each
follower F; chooses hisz, € R. Hence each z becomes a function af, written as

ur, = Lz (uc), which is determined by the relation

IB;H Ir (g, ur) = Jup, (Ug, upy, - U o Um (W), up s - - UF,)- (2)

It is assumed that this minimum exists and that it is unique for each possible ehoice
by the leader. Before the leader announces his decisignke will realize how the
follower will react and hence the leader will choose, and subsequently annayree,
as to minimize7; (uc, lx, (ag), ... lF, (uc)).

2.2.2 Inverse Stackelberg Game

With the use of thanverse Stackelberg equilibriuwoncept between the leader and
the followers £ announces his decision variablgg as the vector of the functions
v() = (1), %), ---7(:)), respectively, where eacly(-) is a continuous mapping

fromayr = (ug, ..., uz,) into u.. Given the vectory(-), F; will make his choice,
according ta:%, = argmin,, Jr, (7(-), ur). £, before announcing(-), will of course
realize how the followers will play and he should exploit this knowledge in order to
choose optimal;-functions, such that ultimately his own cost functigp becomes as

low as possible. Symbolically we could write

7 () = argmin Je (n(Wx), - 9 (W), Tr)

Vi

wWith = (u,, ..., uzs ).

Remark 2.1 The philosophy in most cases (as in the current paper) is first to get an
impression of what the leader can achieve and subsequently try to find a strategy to
really reach this goal. If one does not have any clue as to what the leader can obtain
(in terms of minimal costs), hardly anything is known.

We assume that the followess, , . . ., F,, are among themselves driven by an equilibrium concept
as well, for instance Nash, Pareto (Basar & Olsder (1999)), or Wardrop (Patriksson (1999)).
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3  Dynamic Optimal Toll Design Problem

3.1 Problem Definition

LetC ={1,2,...,|K|} (K| € N) be atime index set. Theth andk’-th time intervals

will be identified byk € K andk’ € K, respectively. LeG = (N, .A) be a given
strongly connected road network with a finite at least two-element nod€ aet a set
A= {li,.... |4} (JA] € N) of directed links (arcs). Lef C A be a set of tollable
links. LetOD c N x N be a set of origin-destination pairs. We will denote the
nonempty set of simple routes from an origito a destination by P(>% and the set

of all simple routes in the network b. Let D©%-* be the average departure rate of
travelers departing during time intervafrom origin o to destinationi. For the sake of
simplicity D% js assumed to be inelastic and given. The average link flow rate of
travelers entering link; € A during time intervak will be denoted b)ql’“, the average
route flow rate of travelers departing during time intervalong router e P will be
denoted byfﬁi. For the sake of simplicity we will through this paper often talk about
the link flow and the route flow instead of the average link flow rate and the average
route flow rate, respectively. The link travel time on lihke A for travelers entering
link {; during time intervak will be denoted byrl’j and defined as

T = Bya) + ;. ©)

Here 3, andd;; are positive constants amﬁi is the number of travelers on link (the
link volume) at the beginning of time mterval defined as

k
h=Ya - Y, @
=1

k
Cew}

whereW* = {w|w + 7 < k}. We assume; = g} .
J J

To ensure the feasibility of the route floWg'],.cp.a) rexc With respect to the average
departure rate of traveler3>?* and the nonnegativity of the route flows, the following
conditions have to be satisfied:

> = DDk (o.d) e OD, kek, (5)
r;€P0:d)
ff>0, rePd  (0,d)€OD, kek. (6)

Let [57’?1,’7';;]”67;,1].@7&;4,@ be a dynamic link-route incidence identifier fGrwith

, 1, if travelers entering the router; € P%
0y =< during time interval k enterthe link I; € A during time interval &',
0 otherwise.

The average link flow ratgﬂj/ (k" € K)is defined by the average route flow rates through

K=Y e

kel r;eP
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With each linkl; € .A we associate the link travel co:’?zt for travelers entering; during
time intervalk defined asj = a7 +6; , wherer! is the link travel time on the link;,
a is the travelers’ value of time (VOT), arﬁ#j is the link toll paid by travelers entering

the link; during the time intervak. Route costs are additive. L6t be the|7 |—vector
of nonnegative tolls on all tollable links during time interva& C.

The travelers are driven by thdynamic route choice equilibrium assignment model
which is based on the assumption that all road users have complete and accurate in-
formation about the current traffic conditions, and that they choose among the shortest
routes available. In an equilibrium state, for each origin-destination pair and for each
departure time interval, the actual route costs on all used routes are equal (Bliemer
(2001)).

3.2 The Dynamic Optimal Toll Design Problem
from a Game-theoretic Viewpoint

The bilevel optimal dynamic design problem can be defined as the one-leader-more-
followers SG and ISG, resp., as follows:

* The leader £) is the road authority minimizing the total travel time of the system
by tolling tollable links, which can be symbolically written as

K
_k .
o = argrrglinz Z Tfi fi, Vk € K. (7

k=1 r;,eP

» The followersF,...F,, are the travelers on the road network. The decision
variables of the travelers are the travelers’ route choices,ug.,c P% if
F; travels from origino to destinationd. The travelers’ decisions are driven by
the dynamic route choice equilibrium assignment and they result in the link and
route flows in the network for each time period, determining the route and the
link volumes in the network.

If the dynamic optimal toll design problem is solved as a SG, then é@c(h,- e T,

k € K) is set as a nonnegative number. In the case of uniform to@lﬁjngt 0, € R}
foreachk € K, [; € T.

If the dynamic optimal toll design problem is solved as an ISG, tolls on tollable links are
set as functions of link flow rates in the network, i&l}j,,: vila . a, - - ql"‘/’A‘), l,eT.
The goal of the road authority is to impose the best possipfenctions ensuring the

lowest possible total travel time,i.e@k)* = 7;%(-), where#;(-) is the vector ofy,-
functions on all tollable links.

Remark 3.1 In general, it can be quite difficult to find optim@}-functions being func-
tions of all the link flows in the network. This is why we define simple tolling functions,
forexample a®; = ¢;qf, ;€ Torbf = p;ap, 1 €T, whereg;, u; € Ry.

Will the road authority be better off playing ISG than playing a SG strategy? In
Stahkova et al. (2006a) we proved that for a two-link network in the static case the
answer is yes. In the following section we will discuss this question for the dynamic
case.
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4  Case studies

Let us assume a network with one origin-destination pajr/) and two linksly, I,

from o to d, wherel; is tolled andil, is untolled. We consideT time intervals, i.e.,

K ={1,2,3,4,5,6,7}. The average departure rates for each time interval are defined
as depicted in Table 4y = 10 [euro/time intervall,3;, = 55, B, = o, =1,

o, = 2.

1
1000°

Table 1: The average departure rates

D(o,d),l D(o,d),? D(o,d),3 D(o,d),4 D(o,d),5 D(o,d),ﬁ D(o,d),?
2000 1500 2000 3000 2000 2000 2500

According to the used tolling scheme we distinguish 6 different games:

« Game 1 (+;): SG with uniform toll -6 = ¢, € R} forall k € K.

Game 2 (+;): SG with time-varying toll 19{“1 e R) forall k € K.

Game 3 (75): ISG with 0 = &af, & € RY.

Game 4 (,): ISG with0] = ), juy, € RY forall k € K.

Game 5 (5): ISG with6] = Ag, A € RY.

Game 6 (3): ISG with0F = xxq/', xi € RS forall k € K.

In all these games the road authority minimizes the total travel time of the network

jG—ZZTqu

kel je{1,2}

41 Gamel
We are looking for constar}; , where

7 2

0,," = arg mm Z Z ur (61,) Q, (01,).

71{1]1

In Table 4.1 you can see the resulting functiefi$d;, ), qf (6,,), 7 (61,). ¢/, (6:,). The
total travel time function7;, can be described as

500 3100 145000
= — 0, - —4
Jer = 57 0" = 5 It =5
and is smooth, twice continuously differentiable, and strictly convex with respégt to
onRY.
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Table 2: Link travel times and link flows - Game 1

k| 7 (?ll) ar, (92102] Ty (?ll) 6121%5911)
1] 2—%6, [2000—2%¢, [ 2+ L6, 209,
2| 52— 26, 1000 S+ 1500 500
31 2—556h | 2000206, | 2+ 6, 2006,
4| §— 550, |2000— 40“ O, | T4+L6, | 1000+ 420,
5 L _"1p 4000 4,1y 2000
6 i1 o, 2000 — 209, | Iy ¥ o, 200 0
2% 31O . 880 3 g . S(Z)%)
7|2 -6, 2000500, | 2+ 10, 500 + 96,

Remark 4.1 Function7g, is very simple. In some of the case studies we will not show
the formulation of the total travel time function, if this formulation is too complex or

long.

The optimal value of toll ig);, =
B ~ 48155.37 time units.

% euro. With this toll value the total travel will be

42 Game?2
In each time intervat € X we are looking for

6,y = CAYRC:
(6,°)" argamngTz 5, (67).

ll_

Similarly as in Section 4.1 we can compute the resulting functighi8; ), ¢’ (6} ),
72(0F), qi.(6f). The total travel time functiod/;, is smooth, twice continuously dif-
ferentiable, strictly convex with respect to e#;lh(k € K), and can be written as

444500 200

Jay= g0 = 20O+ O — 5+ ) (B
- 30 6 - 135 o+ (01 - 41285 o
e Ay =S VA
The optimal toll values aré} )* = 5, (67)* = 2 (9?1)* =8 0 =2,00) =2,

(09) = L2, and(#])* = 2 euro. With these tolls the total travel time of the system
will be 45502125 ~ 48849, 19 time units.

4.3 Game3

We are looking for constargt: > 0, Wheree’f1 = 5;1:;“1 forall £ € K and

2

7
¢ =argmin} > 7i(€)qf(€)
k=1 j

1
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Table 3: Link travel times and link flows on link ; - Game 3

275

E k:
k T €3] q;, (€)
1 2(3+100¢) 6000
34200¢ 34200¢&
9 5(3+80¢) 3000
2(3+200¢) 34200¢&
3 5(9+1000 £416000 52) 2000 (941000 &)
2(34200¢)? (34200 ¢)?
A 400 £+21 2000 (200 £+9)
6+400¢ (3+200¢)*
5 200411 4000
34200¢ 34200 &
6 200411 2000 (941000 &)
34+200¢ (34200 ¢)?
7 25(9+1184 £4+52800£24-64-10%¢3) | 1000 (27—400 £—4-10* £2)
2(3+200¢)° (3+200¢)*

In Table 4.3 you can see the resulting functiefis¢) andg;’ (€).

The total travel time function is smooth and twice continuously differentiable with re-
spect ta¢ € RY, with one inflex point oR_, and can be written as

5000 (7047 + 505728 - 10* €% + 316256 - 107 &* + 104384 - 107 £°)
N (34200¢)°
N 5000 (14592 - 101 €6 4+ 2765880 & + 52336 - 10 £3)

(34 200¢)° '

/e

The optimal value of is ¢* ~ 0.52 - 10~°. Then the total travel time of the system will
be approximately8242.37 time units and tolls imposed during individual intervals are
1.01, 1.51, 1.53, 2.52, 2.68, 2.68, and3.15 euro, respectively.

Remark 4.2 Note that the reason why we did not improve the outcome by use of ISG is
quite straightforward. The travel time on liikk can be expressed aﬁ = ﬁllxﬁ + 9y
and toll on link/; can be defined a@fl = fxfl, then the cost function on the lirdkis

cfl = cwl’j + (91’“1 = aﬁllxﬁ + ady, + 595;“1
= (aﬁll —f- g) ZL‘ll —I— aéll.

The last expression is equivalentd = o7 with 7 = 2} + &, where, =

B, + § € R,. Thus toll defined b{4.3)imposes transformation of the bilevel optimal
toll design problem into problem without tolls and libkof different properties. That is
why the impact of the toll is cancelled. Still, the outcome is better than the outcome of
Game 2.

4.4 Game4

In each time interval we are looking for constafitsuch that) = . =} and

2
* : k k
i = arg min Z; 7 (i) af ()
j:
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The functions (hix) a (har) 7 (), af; (1) can be computed as in the previous cases.
The total travel time functio;, has a quite complex formulation, which is why we
omit the formula here. It is smooth and twice continuously differentiable with respect

: _39 3
to each;é,i The optm;gal values o;hk areu; = 10007 pa = 34007 13 = 356000 M4 = Ta200°
1E = Teossss Mo = mae50 M = 350905 and lead to the following tolls5, 1.03, 3.21,

0.44, 0.49, 1.11, and 0.47 euro, respectively. Therefore, the total travel time of the

system will be% ~ 48849.19 time units.

Remark 4.3 Note that we can use a similar explanation as in Remark 4.2. Also, the
result of this game is the same as the result of Game 2, although tolls are set differently.

4.5 Game>5
We are looking for a constant > 0 such that9 = /\q forall k € K and

2

7
k k
N = arg rgg;;ﬂj(A) a(\)

=1

As in the previous cases we can compute functigh@\), ¢ (A), 7 (\), andg/ (X).
The total travel time functio/;;, is smooth and twice continuously differentiable on
RY. The optimal value ofz is \* ~ 0.28 - 1072, With this value ofX the total travel
time of the system will be approximately802.67 time units and tolls imposed during
individual intervals are.68, 3.07, 4.92, 4.96, 4.15, 4.80, and4.65 euro, respectively.

46 Gameb

In each time interval we are looking fa#; such that)} = xq; , and
Xi = arg min Zl 7 () af; (xe)-
p

The functionst/ (xx), q{“l(_Xk), T,’g(x_k), qlk?(xk) can be computed as in the previous

cases. The total travel time functign;, is smooth and twice continuously differen-
0 k 3 * 3

tiable with respect to each, € RY. The optimal values of" arex; = 1555, X5 = 505

X3 = 1252900, Xi = 5960’ X5 = 41581007 X6 = 30629007 X7 = 733230 and lead to the following

toll values: 5, 2.50, 5.42, 1.04, 1.77, 3.59, 6.97, respectively. The total travel time of
the system will be% ~ 46822.19 time units. Again, the formulation Qf, is
rather complex, which is why we do not present it here. Very interesting is that the total

travel time obtained in this game is the lowest from all the performed case studies.

4.7 Discussion

In Games 5 and 6 we found a very simple tolling schemes ensuring better system per-
formance than with the use of Stackelberg Games 1 and 2. Moreover, we showed that
the outcome of Game 1 with a uniform toll is better than the outcome of Game 2 with
a time-varying toll. Thus, a time-varying toll does not necessary lead to improvement
of the outcome of the SG game. The outcomes of Games 5 and 6 were not better than
those of Games 1 and 2. This phenomenon was explained in Sections 4.5 and 4.6. Very
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interesting is the fact, that Games 2 and 4 brought the same outcome. In this case the
choice of tolling scheme can be driven according to some additional criteria, such as
computational complexity.

5 Conclusion & Future Research

We defined the dynamic optimal toll design problem as both a Stackelberg and an in-
verse Stackelberg game with travelers as followers driven by a dynamic route choice
equilibrium and the road authority as leader minimizing the total travel time of the sys-
tem.

Moreover, on the small network inspired by the San Diego experiment (Supernak et al.
(2002)) we performed six different games, of both Stackelberg and inverse Stackelberg
types, and computed analytically their outcomes for the road authority. This way we
showed that the road authority playing a SG can be better-off using a uniform toll than
using a time-varying toll. We found out that an ISG strategy led to a better outcome
for the road authority even when using very simple tolling schemes, although this does
not hold for all possible tolling functions. However, we did not study more complicated
tolling schemes, which might bring much better results than the ones studied in this
paper. Additional research is needed also to solve large problems of the same type. For
these purposes a numerical model is being developed.

The use of flow-dependent tolling is one of the possible methods how to avoid conges-
tion on road networks. Because this approach seems to bring better results than the use
of flow-independent tolls, the study of this topic can help to build more-efficient tolling
systems in the future.
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