
Stackelberg versus inverse Stackelberg games
in the dynamic optimal toll design problem

Which approach provides more efficient tolling?

TRAIL Research School, Delft, November 2006

Authors
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Abstract

In this paper, the dynamic optimal toll design problem is considered as a one-leader-
more-followers hierarchical non-cooperative game. On a given network the road au-
thority as the leader tolls some links in the network to minimize the total travel time
of the system, while travelers as followers are assumed to be driven by the dynamic
route choice equilibrium assignment. So far toll has always been considered as con-
stant or time-varying. Inspired by San Diego’s Interstate 15 congestion pricing project,
in which heuristics with toll proportional to traffic flow are applied on a real two-link
highway network, we construe toll as proportional to traffic flows in the network. If toll
is set either as constant or time-varying, the dynamic optimal toll design problem can
be treated as a Stackelberg game; if toll is set as a function of the traffic flows in the
network, the problem can be treated as an inverse Stackelberg game.

On a simple two-link network we investigate various tolling concepts, representing both
Stackelberg and inverse Stackelberg games.

We show that the use of flow-dependent toll can improve system performance better
than the use of either constant or time-varying toll, provided that the tolling scheme is
chosen properly.

Keywords
Road pricing, dynamic optimal toll design problem, Stackelberg games, inverse
Stackelberg games
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1 Introduction

Road pricing is one of the most efficient methods to avoid congestion problems on
road networks (Verhoef (2002a), A. D. May (2000)). With the use of appropriate tolls
the road authority can force travelers to behave so as to improve the performance of a
given traffic system. This led to the introduction of the so-called Optimal Toll Design
Problem.

Some researchers have attempted to solve the problem by means of a game-theoretic
approach, in which the game is of a Stackelberg type (e.g. Verhoef (2002b), Joksimovič
et al. (2004), Chan & Lam (2005)). However, these approaches consider toll as inde-
pendent of link and route traffic flow, while it seems to be reasonable to introduce toll
as proportional to traffic flow.

This is why we construed (Staňková et al. (2006b)) the static optimal toll design prob-
lem as an inverse Stackelberg game (Olsder (2005)), where the link tolls are functions
of link or route traffic flows in the network. We considered travelers driven by the deter-
ministic user equilibrium and solved the problem analytically. We proved that with the
static optimal toll design problem defined on a two-link network there exists an inverse
Stackelberg strategy ensuring a better outcome for the road authority than with the stan-
dard Stackelberg strategy. In Staňková et al. (2006a) we applied an inverse Stackelberg
game to a dynamic optimal toll design problem with very simple tolling schemes.

This approach is inspired by San Diego’s Interstate 15 congestion pricing project (Su-
pernak et al. (2002)), in which the two-link highway network was studied. One of the
links was tolled according to network occupancy and toll was established in a heuristic
manner. We consider case studies with a two-link network as well, the problem now
being dynamic. The aim of the road authority is to minimize the total travel time of
the network by tolling one of the links, whereas travelers choose a link so as to mini-
mize their travel costs. As a reference case of the dynamic optimal toll design problem
we take Stackelberg games with toll being constant and time-varying, respectively. We
analytically compute the results of inverse Stackelberg games differing in the tolling
schemes used and compare them with the results of the reference cases. We discuss
whether the inverse Stackelberg approach defining toll as being a function of traffic
flows leads to a better outcome for the road authority than the Stackelberg approach
with toll being either constant or time-varying.

Finding an optimal toll as a function of traffic flows in the network will help solve the
congestion problems by road pricing more efficiently.

The content of the paper is as follows: In Section 2 we briefly introduce Stackelberg
and inverse Stackelberg game schemes with a clear emphasis on the not-so-well-known
inverse Stackelberg games. In Section 3 the dynamic bilevel optimal design problem is
defined as a Stackelberg and inverse Stackelberg game, respectively. In Section 4 we
analytically solve the case studies on a small network. In the considered function spaces
the best possible link toll functions for the road authority are found and the results of
these games compared with the ones of a traditional Stackelberg game with constant or
time-varying toll. The obtained results and possibilities of future research are discussed
in Section 5.
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2 Stackelberg and Inverse Stackelberg Equilibria and
Terminology

In this section we introduce the basic concept of Stackelberg game (SG) and inverse
Stackelberg game (ISG), in Section 2.1 for one-leader-one-follower games and in Sec-
tion 2.2 for one-leader-more-followers games.

2.1 One Leader - One Follower

In its simplest form, there are two players, called leader (L) and follower (F), respec-
tively, either having his own cost function,

JL(uL, uF), JF(uL, uF),

whereuL, uL ∈ R areL’s andF ’s decision variables, respectively. Either player wants
to choose his own decision variable in such a way as to minimize his own cost function.
Without stating an equilibrium concept, the problem as stated so far is not well defined.
Such an equilibrium concept could, for instance, be one named after Nash or Pareto
(Başar & Olsder (1999)).

2.1.1 Stackelberg Game

According to the Stackelberg equilibrium conceptL announces his decisionuL, which
is subsequently made known toF . With this knowledge,F chooses hisuF . HenceuF
becomes a function ofuL, written asuF = lF(uL), determined by the relation

min
uF

JF(uL, uF) = JF(uL, lF(uL)). (1)

It is assumed that this minimum exists and that it is unique for each possible choice
uL by the leader. Before the leader announces his decisionuL, he will realize how the
follower will react and hence the leader will choose, and subsequently announce,uL so
as to minimizeJL(uL, lF(uL)).

Example 1

SupposeJL(uL, uF) = (uF −5)2 +u2
L, JF(uL, uF) = u2

L+u2
F −uLuF . The reaction

curvelF is given byuF = 1
2
uL and henceuL will be chosen so as to minimize(

1

2
uL − 5

)2

+ u2
L,

which immediately results inuL = 2. With this decision by the leader the follower will
chooseuF = 1. The costs for the players are given by 20 and 3, respectively.

2.1.2 Inverse Stackelberg Game

Another equilibrium concept, to be dealt with now, is theinverse Stackelberg equilib-
rium as introduced in (Olsder (2005)). The leader does not announce the scalaruL,
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as above, but a functionγL(·) which mapsuF into uL. Given the functionγL(·), the
follower will make his choiceuF according to

u∗F = arg min
uF

JF(γL(uF), uF).

Optimal quantities will be flagged by an asterisk. The leader, before announcing his
γL(·), will of course realize how the follower will play and he should exploit this knowl-
edge in order to choose the best possibleγ-function, such that, ultimately, his own cost
functionJL becomes as small as possible. Symbolically we could write

γ∗L(·) = arg min
γL(·)

JL(γL(u∗F(γL(·))), u∗F(γL(·))).

In this way one enters the field of composed functions, which is known to be a notori-
ously complex area. From here onward it turns out to be diffult to proceed in an analytic
way. However, the following example shows a trick that often works.

Example 2

Suppose the cost functions are those of Example 1. If both the follower and the leader
would be so kind as to minimizeJL(uL, uF), the follower totally disregarding his own
cost function, the leader would obtain his so-calledteam minimum, i.e.,JL(0, 5) = 0.
Now the leader should choose the curveuL = γL(uF) in such a way that the minimum
uL = 0, uF = 5 lies on this curve and such that this curve does not have other points
in common with the set

JF(uL, uF) = u2
L + u2

F − uLuF ≤ JF(0, 5) = 25.

An example of such a curve isuL = 2uF − 10. With this choice by the leader, the best
for the follower to do is to minimize

JF(2uF − 10, uF),

which leads touF = 5. HenceuL = 0 and, to our surprise, the leader has obtained
his team minimum in spite of the fact that the follower minimized his own cost function
(however, subject to the constraintuL = γL(uF) = 2uF − 10).

Other examples exist in which the leader cannot obtain his team minimum, and such
problems are harder to deal with as exemplified by the following example.

Example 3

This is a continuation of Example 2. We add the constraints−4 ≤ uL ≤ +3 and
−5 ≤ uF ≤ 7 which the two players must obey. The worst that can happen to the
follower is characterized byminuF maxuL JF which is realized foruF = −2, uL = −4
resulting inJF(−4,−2) = 12. Consider the team problem

min
uL,uF

JL, subject to JF ≤ JF(−4,−2) = 12.

The calculation to find this solution, though straightforward, does not lead to a ”nice”
answer. The solution will simply be indicated byu†L, u†F . An optimal choice for the
leader is

uL = γF =

{
−4 for − 5 ≤ uF < u†F − ε,

u†L for u†F − ε ≤ uF ≤ 7,

whereε is an arbitrarily small positive number. The quantityε being greater than zero
makes the solution unique;ε = 0 would lead to a non-unique response by the follower.
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2.2 More Followers

In Section 2.1 we introduced the basic concept of ISG and SG. Since in the dynamic op-
timal toll design problem we deal with one-leader-more-followers cases of the games,
this section deals with an extension of Section 2.1 to a situation with more followers.
Let us assume now a noncooperative game with oneleader(L) andm ∈ N followers
(F1, . . . ,Fm) (m ∈ N, m ≥ 2).1 The leader has decision variablesu1

L, . . . , un
L ∈ Rn

(n ∈ N) and thei-th follower Fi (i ∈ {1, . . . ,m}) has the decision variableuFi
∈

R. We will denote vector(u1
L, . . . , un

L) ∈ Rn by uL. The leader has the cost func-
tion JL(uL, uF) with uF = (uF1 , . . . , (uFi

, . . . uFm), eachFi has the cost function
JFi

(uL, uF). Each player wants to minimize his own cost function.

2.2.1 Stackelberg Game

According to the Stackelberg equilibrium conceptL announces his decisionsuL ∈
Rn, which are subsequently made known to the followers. With this knowledge, each
followerFi chooses hisuFi

∈ R. Hence eachuFi
becomes a function ofuL, written as

uFi
= lFi

(uL), which is determined by the relation

min
uFi

JFi
(uL, uF) = JuFi

(uL, uF1 , . . . , uFi−1
, lFi

(uL), uFi+1
, . . . , uFm). (2)

It is assumed that this minimum exists and that it is unique for each possible choiceuL
by the leader. Before the leader announces his decisionsuL, he will realize how the
follower will react and hence the leader will choose, and subsequently announce,uL so
as to minimizeJL (uL, lF1 (uL) , . . . lFm (uL)) .

2.2.2 Inverse Stackelberg Game

With the use of theinverse Stackelberg equilibriumconcept between the leader and
the followersL announces his decision variablesuL as the vector of the functions
γ(·) = (γ1(·) , γ2(·), . . . γn(·)) , respectively, where eachγi(·) is a continuous mapping
from uF = (uF1 , . . . , uFm) into ui

L. Given the vectorγ(·), Fi will make his choiceuFi

according tou∗Fi
= arg minuFi

JFi
(γ(·), uF). L, before announcingγ(·), will of course

realize how the followers will play and he should exploit this knowledge in order to
choose optimalγi-functions, such that ultimately his own cost functionJL becomes as
low as possible. Symbolically we could write

γ∗i (·) = arg min
γi(·)

JL (γ1(u
∗
F), . . . , γn(u∗F), u∗F)

with u∗F = (u∗F1
, . . . , uF∗

m
).

Remark 2.1 The philosophy in most cases (as in the current paper) is first to get an
impression of what the leader can achieve and subsequently try to find a strategy to
really reach this goal. If one does not have any clue as to what the leader can obtain
(in terms of minimal costs), hardly anything is known.

1We assume that the followersF1, . . . ,Fm are among themselves driven by an equilibrium concept
as well, for instance Nash, Pareto (Başar & Olsder (1999)), or Wardrop (Patriksson (1999)).
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3 Dynamic Optimal Toll Design Problem

3.1 Problem Definition

LetK = {1, 2, . . . , |K|} (|K| ∈ N) be a time index set. Thek-th andk′-th time intervals
will be identified byk ∈ K andk′ ∈ K, respectively. LetG = (N ,A) be a given
strongly connected road network with a finite at least two-element node setN and a set
A = {l1, . . . , l|A|} (|A| ∈ N) of directed links (arcs). LetT ⊂ A be a set of tollable
links. LetOD ⊂ N × N be a set of origin-destination pairs. We will denote the
nonempty set of simple routes from an origino to a destinationd byP(o,d), and the set
of all simple routes in the network byP . Let D(o,d),k be the average departure rate of
travelers departing during time intervalk from origino to destinationd. For the sake of
simplicity D(o,d),k is assumed to be inelastic and given. The average link flow rate of
travelers entering linklj ∈ A during time intervalk will be denoted byqk

lj
, the average

route flow rate of travelers departing during time intervalk along routeri ∈ P will be
denoted byfk

ri
. For the sake of simplicity we will through this paper often talk about

the link flow and the route flow instead of the average link flow rate and the average
route flow rate, respectively. The link travel time on linklj ∈ A for travelers entering
link lj during time intervalk will be denoted byτ k

lj
and defined as

τ k
lj

= βljx
k
lj

+ δlj . (3)

Hereβlj andδlj are positive constants andxk
lj

is the number of travelers on linklj (the
link volume) at the beginning of time intervalk, defined as

xk
lj

=
k∑

τ=1

qτ
lj
−

∑
ζ∈Wk

j

qζ
lj
, (4)

whereWk
j = {w|w + τw

lj
≤ k}. We assumex1

lj
= q1

lj
.

To ensure the feasibility of the route flows[fk
ri
]ri∈P(o,d),k∈K with respect to the average

departure rate of travelersD(o,d),k and the nonnegativity of the route flows, the following
conditions have to be satisfied:∑

ri∈P(o,d)

fk
ri

= D(o,d),k, (o, d) ∈ OD, k ∈ K, (5)

fk
ri
≥ 0, ri ∈ P(o,d), (o, d) ∈ OD, k ∈ K. (6)

Let [δk,k′

ri,lj
]ri∈P,lj∈A,k,k′∈K be a dynamic link-route incidence identifier forG with

δk,k′

ri,lj
=

 1, if travelers entering the routeri ∈ P(o,d)

during time interval k enter the link lj ∈ A during time interval k′,
0 otherwise.

The average link flow rateqk′

lj
(k′ ∈ K) is defined by the average route flow rates through

qk′

lj
=

∑
k∈K

∑
ri∈P

δk,k′

ri,lj
fk

ri
, lj ∈ A.
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With each linklj ∈ Awe associate the link travel costck
lj

for travelers enteringlj during
time intervalk defined asck

lj
= ατ k

lj
+ θk

lj
, whereτ k

lj
is the link travel time on the linklj,

α is the travelers’ value of time (VOT), andθk
lj

is the link toll paid by travelers entering

the link lj during the time intervalk. Route costs are additive. Letθ
k

be the|T |−vector
of nonnegative tolls on all tollable links during time intervalk ∈ K.

The travelers are driven by thedynamic route choice equilibrium assignment model,
which is based on the assumption that all road users have complete and accurate in-
formation about the current traffic conditions, and that they choose among the shortest
routes available. In an equilibrium state, for each origin-destination pair and for each
departure time interval, the actual route costs on all used routes are equal (Bliemer
(2001)).

3.2 The Dynamic Optimal Toll Design Problem
from a Game-theoretic Viewpoint

The bilevel optimal dynamic design problem can be defined as the one-leader-more-
followers SG and ISG, resp., as follows:

• The leader (L) is the road authority minimizing the total travel time of the system
by tolling tollable links, which can be symbolically written as

θ∗
k

= arg min
θ

k

K∑
k=1

∑
ri∈P

τ k
ri

fk
ri
, ∀k ∈ K. (7)

• The followersF1, . . .Fm are the travelers on the road network. The decision
variables of the travelers are the travelers’ route choices, i.e.,uFi

∈ P(o,d) if
Fi travels from origino to destinationd. The travelers’ decisions are driven by
the dynamic route choice equilibrium assignment and they result in the link and
route flows in the network for each time period, determining the route and the
link volumes in the network.

If the dynamic optimal toll design problem is solved as a SG, then eachθk
lj

(lj ∈ T ,

k ∈ K) is set as a nonnegative number. In the case of uniform tollingθk
lj

= θlj ∈ R0
+

for eachk ∈ K, lj ∈ T .

If the dynamic optimal toll design problem is solved as an ISG, tolls on tollable links are
set as functions of link flow rates in the network, i.e.,θk

lj
= γj(q

1
l1
, q1

l2
, . . . qk

l|A|
), lj ∈ T .

The goal of the road authority is to impose the best possibleγj-functions ensuring the

lowest possible total travel time,i.e.,(θ
k
)∗ = γj

∗(·), whereγj(·) is the vector ofγj-
functions on all tollable links.

Remark 3.1 In general, it can be quite difficult to find optimalγj-functions being func-
tions of all the link flows in the network. This is why we define simple tolling functions,
for example asθk

lj
= ξj qk

lj
, lj ∈ T or θk

lj
= µj xk

lj
, lj ∈ T , whereξj, µj ∈ R+.

Will the road authority be better off playing ISG than playing a SG strategy? In
Stǎnková et al. (2006a) we proved that for a two-link network in the static case the
answer is yes. In the following section we will discuss this question for the dynamic
case.
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4 Case studies

Let us assume a network with one origin-destination pair(o, d) and two linksl1, l2
from o to d, wherel1 is tolled andl2 is untolled. We consider7 time intervals, i.e.,
K = {1, 2, 3, 4, 5, 6, 7}. The average departure rates for each time interval are defined
as depicted in Table 4,α = 10 [euro/time interval],βl1 = 1

2000
, βl2 = 1

1000
, δl1 = 1,

δl2 = 2.

Table 1: The average departure rates

D(o,d),1 D(o,d),2 D(o,d),3 D(o,d),4 D(o,d),5 D(o,d),6 D(o,d),7

2000 1500 2000 3000 2000 2000 2500

According to the used tolling scheme we distinguish 6 different games:

• Game 1 (G1): SG with uniform toll -θk
l1

= θl1 ∈ R0
+ for all k ∈ K.

• Game 2 (G2): SG with time-varying toll -θk
l1
∈ R0

+ for all k ∈ K.

• Game 3 (G3): ISG with θk
l1

= ξxk
l1
, ξ ∈ R0

+.

• Game 4 (G4): ISG with θk
l1

= µkx
k
l1
, µk ∈ R0

+ for all k ∈ K.

• Game 5 (G5): ISG with θk
l1

= λqk
l1
, λ ∈ R0

+.

• Game 6 (G6): ISG with θk
l1

= χkq
k
l1
, χk ∈ R0

+ for all k ∈ K.

In all these games the road authority minimizes the total travel time of the network

JGi
=

∑
k∈K

∑
j∈{1,2}

τ k
lj

qk
lj
.

4.1 Game 1
We are looking for constantθ∗l1 , where

θl1
∗ = arg min

θl1
≥0

7∑
k=1

2∑
j=1

τlj(θl1) qlj(θl1).

In Table 4.1 you can see the resulting functionsτ k
l1
(θl1), qk

l1
(θl1), τ k

l2
(θl1), qk

l2
(θl1). The

total travel time functionJG1 can be described as

JG1 =
500

27
θl1

2 − 3100

27
θl1 +

145000

3
,

and is smooth, twice continuously differentiable, and strictly convex with respect toθl1

onR0
+.
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Table 2: Link travel times and link flows - Game 1

k τ k
l1
(θl1) qk

l1
(θl1) τ k

l2
(θl1) qk

l2
(θl1)

1 2− 1
30

θl1 2000− 200
3

θl1 2 + 1
15

θl1
200
3

θl1

2 5
2
− 1

30
θl1 1000 5

2
+ 1

15
θl1 500

3 5
2
− 1

90
θl1 2000− 200

9
θl1

5
2

+ 4
45

θl1
200
9

θl1

4 7
2
− 1

30
θl1 2000− 400

9
θl1

7
2

+ 1
15

θl1 1000 + 400
9

θl1

5 11
3
− 1

30
θl1

4000
3

11
3

+ 1
15

θl1
2000

3

6 11
3
− 1

30
θl1 2000− 200

9
θl1

11
3

+ 1
15

θl1
200
9

θl1

7 25
6
− 1

270
θl1 2000− 800

27
θl1

25
6

+ 13
135

θl1 500 + 800
27

θl1

Remark 4.1 FunctionJG1 is very simple. In some of the case studies we will not show
the formulation of the total travel time function, if this formulation is too complex or
long.

The optimal value of toll isθ∗l1 = 31
10

euro. With this toll value the total travel will be
1300195

27
≈ 48155.37 time units.

4.2 Game 2
In each time intervalk ∈ K we are looking for

(θl1
k)∗ = arg min

θk
l1
≥0

2∑
j=1

τlj(θ
k
lj
) qlj(θ

k
lj
).

Similarly as in Section 4.1 we can compute the resulting functionsτ k
l1
(θk

l1
), qk

l1
(θk

l1
),

τ k
l2
(θk

l1
), qk

l2
(θk

l1
). The total travel time functionJG2 is smooth, twice continuously dif-

ferentiable, strictly convex with respect to eachθk
l1

(k ∈ K), and can be written as

JG2 =
444500

9
− 200

3
θ1

l1
+

20

3
(θ3

l1
)2 − 100

3
θ2

l1
+

20

3
(θ3

l1
)2

− 650

9
θ3

l1
+

20

3
(θ3

l1
)2 − 125

9
θ4

l1
+

20

3
(θ4

l1
)2 − 425

18
θ5

l1

+
20

3
(θ5

l1
)2 − 575

12
θ6

l1
+

20

3
(θ6

l1
)2 − 575

24
θ7

l1
+

20

3
(θ7

l1
)2.

The optimal toll values are(θ1
l1
)∗ = 5, (θ2

l1
)∗ = 5

2
, (θ3

l1
)∗ = 65

12
, (θ4

l1
)∗ = 25

24
, (θ5

l1
)∗ = 85

48
,

(θ6
l1
)∗ = 115

32
, and(θ7

l1
)∗ = 115

64
euro. With these tolls the total travel time of the system

will be 450194125
9216

≈ 48849.19 time units.

4.3 Game 3
We are looking for constantξ∗ ≥ 0, whereθk

l1
= ξxk

l1
for all k ∈ K and

ξ∗ = arg min
ξ≥0

7∑
k=1

2∑
j=1

τ k
lj
(ξ) qk

lj
(ξ).
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Table 3: Link travel times and link flows on link l1 - Game 3

k τ k
l1
(ξ) qk

l1
(ξ)

1 2 (3+100 ξ)
3+200 ξ

6000
3+200 ξ

2 5(3+80 ξ)
2(3+200 ξ)

3000
3+200 ξ

3
5(9+1000 ξ+16000 ξ2)

2(3+200 ξ)2
2000 (9+1000 ξ)

(3+200 ξ)2

4 400 ξ+21
6+400 ξ

2000 (200 ξ+9)

(3+200 ξ)2

5 200 ξ+11
3+200 ξ

4000
3+200 ξ

6 200 ξ+11
3+200 ξ

2000 (9+1000 ξ)

(3+200 ξ)2

7 25(9+1184 ξ+52800 ξ2+64·104 ξ3)

2(3+200 ξ)3
1000 (27−400 ξ−4·104 ξ2)

(3+200 ξ)3

In Table 4.3 you can see the resulting functionsτ k
l1
(ξ) andqk

l1
(ξ).

The total travel time function is smooth and twice continuously differentiable with re-
spect toξ ∈ R0

+, with one inflex point onR+, and can be written as

JG3 =
5000 (7047 + 505728 · 103 ξ2 + 316256 · 107 ξ4 + 104384 · 109 ξ5)

(3 + 200 ξ)6

+
5000 (14592 · 1011 ξ6 + 2765880 ξ + 52336 · 106 ξ3)

(3 + 200 ξ)6 .

The optimal value ofξ is ξ∗ ≈ 0.52 · 10−5. Then the total travel time of the system will
be approximately48242.37 time units and tolls imposed during individual intervals are
1.01, 1.51, 1.53, 2.52, 2.68, 2.68, and3.15 euro, respectively.

Remark 4.2 Note that the reason why we did not improve the outcome by use of ISG is
quite straightforward. The travel time on linkl1 can be expressed asτ k

l1
= βl1x

k
l1

+ δl1

and toll on linkl1 can be defined asθk
l1

= ξxk
l1
, then the cost function on the linkl1 is

ck
l1

= ατ k
l1

+ θk
l1

= αβl1x
k
l1

+ αδl1 + ξxk
l1

= (αβl1 + ξ) xl1 + αδl1 .

The last expression is equivalent toc̃k
l1

= ατ̃ k
l1

with τ̃ k
l1

= β̃l1x
k
l1

+ δl1 , whereβ̃l1 =

βl1 + ξ
α
∈ R+. Thus toll defined by(4.3) imposes transformation of the bilevel optimal

toll design problem into problem without tolls and linkl1 of different properties. That is
why the impact of the toll is cancelled. Still, the outcome is better than the outcome of
Game 2.

4.4 Game 4

In each time interval we are looking for constantµ∗k such thatθk
l1

= µk xk
l1

and

µ∗k = arg min
µk≥0

2∑
j=1

τ k
lj
(µk) qk

lj
(µk).
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The functionsτ k
l1
(µk), q

k
l1
(µk), τ

k
l2
(µk), q

k
l2
(µk) can be computed as in the previous cases.

The total travel time functionJG4 has a quite complex formulation, which is why we
omit the formula here. It is smooth and twice continuously differentiable with respect
to eachµk. The optimal values ofµk areµ∗1 = 3

1000
, µ∗2 = 3

3400
, µ∗3 = 39

20600
, µ∗4 = 3

14200
,

µ∗5 = 51
150200

, µ∗6 = 23
32600

, µ∗7 = 69
264200

, and lead to the following tolls:5, 1.03, 3.21,
0.44, 0.49, 1.11, and 0.47 euro, respectively. Therefore, the total travel time of the
system will be450194125

9216
≈ 48849.19 time units.

Remark 4.3 Note that we can use a similar explanation as in Remark 4.2. Also, the
result of this game is the same as the result of Game 2, although tolls are set differently.

4.5 Game 5
We are looking for a constantλ∗ ≥ 0 such thatθk

l1
= λqk

l1
for all k ∈ K and

λ∗ = arg min
λ≥0

7∑
k=1

2∑
j=1

τ k
lj
(λ) qk

lj
(λ).

As in the previous cases we can compute functionsτ k
l1
(λ), qk

l1
(λ), τ k

l2
(λ), andqk

l2
(λ).

The total travel time functionJG5 is smooth and twice continuously differentiable on
R0

+. The optimal value ofλ is λ∗ ≈ 0.28 · 10−2. With this value ofλ the total travel
time of the system will be approximately47802.67 time units and tolls imposed during
individual intervals are4.68, 3.07, 4.92, 4.96, 4.15, 4.80, and4.65 euro, respectively.

4.6 Game 6
In each time interval we are looking forχ∗k such thatθk

l1
= χkq

k
l1
, and

χ∗k = arg min
χk≥0

2∑
j=1

τ k
lj
(χk) qk

lj
(χk).

The functionsτ k
l1
(χk), qk

l1
(χk), τ k

l2
(χk), qk

l2
(χk) can be computed as in the previous

cases. The total travel time functionJG6 is smooth and twice continuously differen-
tiable with respect to eachχk ∈ R0

+. The optimal values ofχk areχ∗1 = 3
1000

, χ∗2 = 3
1400

,
χ∗3 = 39

12200
, χ∗4 = 3

5960
, χ∗5 = 51

41800
, χ∗6 = 69

30200
, χ∗7 = 2409

736600
and lead to the following

toll values:5, 2.50, 5.42, 1.04, 1.77, 3.59, 6.97, respectively. The total travel time of
the system will be11650876375

248832
≈ 46822.19 time units. Again, the formulation ofJG6 is

rather complex, which is why we do not present it here. Very interesting is that the total
travel time obtained in this game is the lowest from all the performed case studies.

4.7 Discussion
In Games 5 and 6 we found a very simple tolling schemes ensuring better system per-
formance than with the use of Stackelberg Games 1 and 2. Moreover, we showed that
the outcome of Game 1 with a uniform toll is better than the outcome of Game 2 with
a time-varying toll. Thus, a time-varying toll does not necessary lead to improvement
of the outcome of the SG game. The outcomes of Games 5 and 6 were not better than
those of Games 1 and 2. This phenomenon was explained in Sections 4.5 and 4.6. Very
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interesting is the fact, that Games 2 and 4 brought the same outcome. In this case the
choice of tolling scheme can be driven according to some additional criteria, such as
computational complexity.

5 Conclusion & Future Research
We defined the dynamic optimal toll design problem as both a Stackelberg and an in-
verse Stackelberg game with travelers as followers driven by a dynamic route choice
equilibrium and the road authority as leader minimizing the total travel time of the sys-
tem.

Moreover, on the small network inspired by the San Diego experiment (Supernak et al.
(2002)) we performed six different games, of both Stackelberg and inverse Stackelberg
types, and computed analytically their outcomes for the road authority. This way we
showed that the road authority playing a SG can be better-off using a uniform toll than
using a time-varying toll. We found out that an ISG strategy led to a better outcome
for the road authority even when using very simple tolling schemes, although this does
not hold for all possible tolling functions. However, we did not study more complicated
tolling schemes, which might bring much better results than the ones studied in this
paper. Additional research is needed also to solve large problems of the same type. For
these purposes a numerical model is being developed.

The use of flow-dependent tolling is one of the possible methods how to avoid conges-
tion on road networks. Because this approach seems to bring better results than the use
of flow-independent tolls, the study of this topic can help to build more-efficient tolling
systems in the future.
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