
On congestion pricing Stackelberg games in dynamic
traffic networks

Neurosimulation-based solution approach

TRAIL Research School, Delft, October 2008

Authors
Kateřina Staňková, MSc., Prof. dr. Geert Jan Olsder
Faculty of Electrical Engineering, Mathematics and Computer Science, Department of
Mathematical Systems Theory, Delft University of Technology, the Netherlands
Dr. Michiel C.J. Bliemer
Faculty of Civil Engineering and Geosciences, Department of Transport & Planning,
Delft University of Technology, the Netherlands

© 2008 by K. Staňková, G.J. Olsder, M.C.J. Bliemer and TRAIL Research School

Contents

Abstract

1 Introduction & literature overview . 1

2 The optimal toll design problem. 2

2.1 Preliminaries. 2

2.2 Problem formulation . 4

3 Neurosimulation. 6

3.1 Supervised learning . 6

3.2 Neurosimulator FAUN 1.1 . 8

4 Solution of the dynamic optimal toll design problem 8

4.1 Computing sample points of the total travel time function 9

4.2 Application of FAUN 1.1 simulator . 10

5 Case studies . 11

5.1 Case study 1 . 12

5.2 Case study 2 . 13

5.3 Discussion . 13

6 Conclusions & future research . 14

Acknowledgments . 14

References . 14

Abstract
In this paper the optimal toll design problem as a dynamic game of inverse Stackelberg
type is investigated, with the road authority as a leader and drivers of the road network
as followers. The road authority sets traffic-flow dependent tolls on some of the links
so as to minimize the total travel time of the system, while the travelers choose their
routes so as to minimize their perceived travel costs.

We formulate the dynamic optimal toll design problem with flow-dependent second-
best tolling, discuss its properties, and present a numerical solution of the problem. The
neurosimulator FAUN (Fast Approximation with Universal Neural Networks) is used
to solve the minimizing problem. The algorithm performance is shown on small case
studies.

In our case studies the flow-dependent tolling improved the system performance re-
markably even with a rather simple toll function. This suggests that the traffic-flow
dependent toll is a very promising tool for real applications. For the real-time applica-
tions, the parallelization of the solution method is a must.

Keywords
Road pricing, dynamic optimal toll design problem, logit-based stochastic user equi-
librium, dynamic traffic assignment, first-best tolling, second-best tolling, Stackelberg
games, inverse Stackelberg games, neural networks, FAUN.

On congestion pricing Stackelberg games in dynamic traffic networks 1

1 Introduction & literature overview
Traffic congestion has become a big problem, especially in heavily populated metropoli-
tan areas. With increasing occupancy of the road networks, the problem of congestion
becomes more and more actual. Common methods that are used to alleviate congestion
may be too expensive, difficult to apply, and not very efficient. When it is not easy to
apply the standard methods, traffic congestion can be reduced by imposing appropriate
tolls using a road pricing scheme.

The idea of reducing congestion via appropriate tolls led to the introduction of the so-
called optimal toll design problem (Patriksson & Rockefellar (2002); Joksimovič et al.
(2004)). This optimal toll design problem is a problem of the Stackelberg type (Başar
& Olsder (1999); Bagchi (1984)), applied to the traffic environment with a road author-
ity as a leader and travelers as followers. The aim of the road authority is to minimize
its objective function, which is dependent on the travelers’ decisions, by choosing op-
timal tolls for a subset of links (so-called tollable links), while the travelers minimize
their individual travel costs. Their behavior is usually modeled by applying a traffic
assignment (Patriksson (1994); Fisk (1980)).

There are extensive studies focusing on the static optimal toll design problem, i.e.,
on problems in which decisions of the players (travelers and the road authority) do
not evolve in time (Verhoef (2002); Patriksson & Rockefellar (2002)). Although static
models are still widely used, the theory and practice of dynamic models have evolved
significantly over the last ten years. In the dynamic version of the optimal toll design
problem the dynamic traffic assignment (DTA) applies (Bliemer (2001a)). DTA models
typically describe route choice behavior of travelers on a transportation network and the
way in which traffic dynamically propagates through the network.

If the travelers are assumed to have perfect information, the deterministic user equilib-
rium (DUE) applies (Wardrop (1952)), in both dynamic and static optimal toll design.
Similarly, with imperfect information, the stochastic user equilibrium (SUE) applies,
for example as a logit-based stochastic equilibrium (LB-SUE), see (Lotito et al. (2005)).

Considering possible tolling strategies there are two main research streams differing in
the definition of the set of tollable links. With so-called first-best tolling (or pricing)
all the links in the network can be tolled (Patriksson & Rockefellar (2002); Yilidirim
& Hearn (2005)), with so-called second-best tolling not all links are tollable (Verhoef
(2002)). The latter concept is clearly more applicable in practice.

Following extensive case studies of two-route congestion problems in static networks
(Vickrey (1969); Defermos & Sparrow (1971); E. T. Verhoef & Rietveld (1996)) we
have introduced its second-best variant, where the link tolls are functions of link and
route flows in the network, for only a proper subset of all links. This fits within a the-
oretical framework of “inverse Stackelberg problems” (Olsder (2005); Staňková et al.
(2006)).

This paper introduces an extension of our recent research to dynamic problems with
SUE. Although some authors (e.g., Braid (1989); Arnott et al. (1990)) consider the
step-wise second-best tolling, to the best of our knowledge no research dealing with the
optimal toll design problem with the second-best tolling, the travelers driven by LB-
SUE, and the aim to find optimal toll defined as a function of the traffic flows in the
network has been done before. Since the problem is NP-hard, advanced optimization

2 TRAIL Research School, Delft, October 2008

techniques, which can be parallelized, should be used in order to speed up the solution
process. In this paper an algorithm using neural networks is introduced as such an opti-
mization technique. Neurosimulation is usually based on complete software emulation,
i.e., inputs, outputs, neurons, synapses and weights are implemented in software. The
FAUN (Fast Approximation with Universal Neural networks) neurosimulator enables
supervised learning with artificial neural networks (ANN). A well trained ANN is a
mathematical function which approximates the output of the input-output sample pat-
terns reasonably (generalization). Here the word “unreasonable” summarizes different
quality factors for the trained ANN, i.e., the mathematical function. The neurosimulator
FAUN has already been employed to solve other problems in the domain of dynamic
games, see, e.g., Breitner (2000); Mettenheim & Breitner (2005, 2006).

The contributions of the paper can be listed as follows:

• An algorithm solving the dynamic optimal toll design problem (with traffic-flow
dependent toll) using neural networks is introduced and presented on a small case
study. This algorithm is applicable on general networks.

• This problem is also a new application of the neurosimulator FAUN.

• We show that the flow-dependent tolling can never be worse than the flow-in-
dependent one.

• Paradoxical phenomena of optimal toll decreasing with actual traffic flows are
presented and discussed.

This paper is organized as follows: In Section 2 the optimal toll design problem is
presented, including some properties and examples of interesting phenomena, which
will be explained analytically. In Section 3 neurosimulation and the neurosimulator
FAUN 1.1 used for solving our problem are introduced. In Section 4 the algorithm, that
is used for solving the problem, is presented. In Section 5 we show the case studies on
a Chen network. Conclusions and future research are discussed in Section 6.

2 The optimal toll design problem
In this section the dynamic optimal toll design problem is introduced. This problem
belongs to the class of so-called inverse Stackelberg games (Staňková et al. (2006),
Staňková et al. (2008b)).

2.1 Preliminaries
Let G(N ,A) be a road network defined by finite nonempty set of nodes N and finite
nonempty set of links A. Let R ⊂ N and S ⊂ N be finite nonempty sets of origin
nodes (origins) and destination nodes (destinations), respectively, and letRS ⊂ N×N
be a subset of origin-destination pairs. For each origin-destination pair (r, s) ∈ RS,
where r is the origin and s is the destination, there is a travel demand d(r,s),k ∈ R+ [veh]
on the number of travelers departing during k-th time interval from origin r to destina-
tion s. The network is assumed to be strongly connected, i.e., at least one route con-
nects each (r, s)-pair. For each directed arc a ∈ A the following parameters are initially

On congestion pricing Stackelberg games in dynamic traffic networks 3

given: link length sa [km], maximum speed ϑmax
a [km/h], minimum speed ϑmin

a [km/h],
critical speed ϑcrit

a [km/h], jam density J jam
a [pcu1/km], and the unrestricted link capac-

ity Ca [pcu/h]. Dynamic link travel time for an individual user entering link a during
k-th time interval (k ∈ K) is defined as

τ k
a =

sa

ϑk
a

, (1)

where the link speed ϑk
a [km/h] can be computed using Smulders speed-density function

(see Smulders (1988)):

ϑk
a =

ϑmax

a + ϑcrit
a −ϑmax

a

Jcrit
a

Jk
a , if Jk

a ≤ J crit
a ,

J jam
a +

(
ϑcrit

a − ϑmin
a

) 1

Jk
a
− 1

J
jam
a

1

Jcrit
a
− 1

J
jam
a

, if J crit
a ≤ Jk

a ≤ J jam
a ,

ϑk
a if Jk

a ≥ J jam
a ,

(2)

with critical density J crit
a [pcu/km] defined as J crit

a = Ca

ϑcrit
a
. Dynamic link cost as ex-

perienced by a single traveler entering link a ∈ A during k-th time interval is defined
as

cka = ατ k
a + θk

a, (3)

where α is the traveler’s value of time [C/h] and θk
a [C] is toll that a single traveler pays

when entering link a during k-th time interval. The dynamic link travel times, tolls, and
costs are additive, i.e.,

τ k
p =

∑
a∈A

∑
k′∈K

δk,k′

a,p τ
k′

a , θk
p =

∑
a∈A

∑
k′∈K

δk,k′

a,p θ
k′

a , ckp =
∑
a∈A

∑
k′∈K

δk,k′

a,p c
k′

a . (4)

Here δk,k′
a,p is a dynamic route-link incidence indicator, equal to one if drivers traveling

over path p ∈ P and departing during k-th time interval k ∈ K reach link a during
k′-th time interval and zero otherwise, and τ k

p , θ
k
p , and ckp are dynamic route travel time,

dynamic route toll, and dynamic route cost for travelers entering route p ∈ P during
k-th time interval, respectively. Dynamic link flow rates are additive with respect to
dynamic route flow rates, i.e.,

qk
a =

∑
a∈A

∑
k′∈K

δk,k′

a,p f
k′

p , (5)

where qk
a [veh/h] is the dynamic link flow rate of drivers entering link a during k-th

interval and fk′
p [veh/h] is the dynamic route flow rate of travelers entering route p

during k′-th time interval. For all (r, s) ∈ RS, p ∈ P(r,s), and k ∈ K, the route flow

rates have to be feasible, i.e., vector of route flow rates f(r,s),k def
=
(
f

(r,s),k
1 , . . . , f

(r,s),k

|P(r,s)|

)′
belongs to the set Q(r,s),k defined as

Q(r,s),k ,

{(
x1, . . . , x|P(r,s)|

)′
:
∑

i∈{1,...|P(r,s)|} xi = d(r,s),k, xi ≥ 0, ∀i ∈ {1, . . . , |P(r,s)|}
}
.

(6)

1passenger car units

4 TRAIL Research School, Delft, October 2008

From (5) and (6) it follows that also the link flow rates are feasible with respect to
the route flow rates, i.e., vector of link flows qA,k =

(
qk

1 , . . . , q|A|k
)′ belongs to set of

feasible link flows QA,k defined as

QA,k ,

(y1, . . . , y|A|
)

: ya =
∑

a∈{1,...,|A|}

∑
k′∈K

δk,k′

a,p f
k′

p , ∀a ∈ A}

 . (7)

The link dynamics is defined by the Dynamic Network Loading (DNL) model. The
DNL model is formulated as a system of equations expressing link dynamics, flow con-
servation, flow propagation, and boundary constraints. The DNL model is adopted
from Chabini (2002) and is not further discussed here.

Drivers minimize their perceived travel costs. We assume that in equilibrium state no
traveler can minimize her perceived travel costs by unilateral change of her route. So-
called dynamic logit-based stochastic user equilibrium applies (see Bliemer (2001b);
Lotito et al. (2005)).

2.2 Problem formulation
The problem to be solved is an inverse Stackelberg game with the road authority as the
leader and the drivers as followers. The road authority sets tolls on so-called tollable
links T ⊂ A as mappings of traffic flows in the network so as to minimize the total
travel time of the system. For each travel time interval the road authority imposes a
vector of the link tolls Θk def

=
(
θk

1(·), . . . , θk
|A|(·)

)
, θk

a(·) : QA,k → R+
0 , in such a way so

as to minimize the total travel time of the system. Trivially, the problem of minimizing
the total travel time ∑

k∈K

∑
(r,s)∈RS

∑
p(r,s)∈P(r,s)

τ (r,s),k
p · f (r,s),k

p

is equivalent to minimizing congestion in the network.

Let matrix Θ be a matrix of toll functions set by the road authority on each link for each
time interval, i.e.,

Θ
def
=

 Θ1(·)
...

Θ|K|(·)

 =

 θ1
1(·) . . . θ1

|A|(·)
...

θ
|K|
1 (·) . . . θ

|K|
|A|(·)

 , (8)

where for each k ∈ K and a ∈ A

θk
a(·)

{
= 0, if a ∈ A \ T ,
≥ 0, otherwise. (9)

The main problem solved in this paper can be defined as follows:

(P) Find
Θ∗ = arg min

Θ

∑
k∈K

∑
(r,s)∈RS

∑
p∈P(r,s)

τ (r,s),k
p · f (r,s),k

p

subject to DNL, (1) - (5), LB-SUE, (9), while the link and route flows are feasible.

Remarks:

On congestion pricing Stackelberg games in dynamic traffic networks 5

1. The total travel time is clearly nonlinear function of the link flows in the network.
The problem (P) is a member of the class called nonlinear bilevel programming
problems. In Bard (1991) it was shown that even the linear bilevel programming
problems (with linear objective function) are NP-hard. Furthermore, in Hansen
et al. (1992) it is shown that the linear bilevel programming problems are strongly
NP-hard. From this it follows that the problem (P) is strongly NP-hard, too. The
complete proof of this statement can be found in Staňková et al. (2008b). Since
the problem (P) is strongly NP-hard, heuristic methods, like neurosimulation in-
troduced in this paper, should be used to find a (satisfying) solution.

2. Please note that the problem of finding the uniform toll or time-varying toll is
clearly a special case of (P). It follows from the observation that Stackelberg
games are in subset of inverse Stackelberg games. For more information on this
topic, see Staňková et al. (2008a), Başar & Olsder (1999).

3. The problem (P) has generally a nonunique solution (See Staňková et al. (2008b))
for proof of existence and nonuniqueness of a solution.

4. The solution to the problem (P) does not need to be a function increasing with
the traffic flow rate, as illustrated on the following static2 example with linear
link travel time function. This phenomena will appear also in the case studies in
Section 5.

Example 2.1 (Toll decreasing with the traffic flow). Let us consider a simple ex-
ample of a static optimal toll design problem on a three-link network with one
origin-destination pair and travelers driven by deterministic user equilibrium
(DUE). For the sake of simplicity we assume that both traffic demand for the
origin-destination pair and value of time are utilized to one and the link cost and
time functions are linear, i.e.,

D = q1 + q2 + q3, (10)
c1 = ατ1 + θ1(q1), c2 = ατ2 + θ2(q2), c3 = αθ3, (11)
τ1 = β1q1 + δ1, τ2 = β2 q2 + δ2, τ3 = β3 q3 + δ3. (12)

with D = 1, α = 1, β1 = 1, β2 = 2, β3 = 0.05, δ1 = 1.008, δ2 = 0.672, δ3 = 2.
Then the total travel time F (q1, q2, q3) function can be computed as

F (q1, q2, q3) =
3∑

j=1

qlj τlj

= q1 (q1 + 1.008)

+ q2(2 q2 + 0.672) + (1− q1 − q2)(2.05− 0.05 q1 − 0.05 q2)

= 1.05 q2
1 + 2.05 q2

2 − 1.092 q1 − 1.428 q2 + 2.05 + 0.1 q1 q2.

Global minimum of F (q1, q2, q3) is in q∗1 = 0.504 [veh/h], q∗2 = 0.336 [veh/h],
q∗3 = 0.16 [veh/h] and F (q∗1, q

∗
2, q
∗
3) = 1.534912 [h]. This is the best what the

road authority can obtain.

2with K def= 1

6 TRAIL Research School, Delft, October 2008

Let us assume that the road authority sets the tolls on links 1 and 2, as linear
functions of the link flows on the same links, i.e., θ1(q1) = Aq1 + B, θ2(q2) =
Aq2 + B, where θ1(·), θ1(·) > 0 on (0, 1). With DUE c1 = c2 = c3 if all three
links are used. The road authority would like the followers to cover the network
such that q(F)

lj
= q∗lj ∀j ∈ {1, 2, 3}, the following linear system has to be solved:

β1 q
∗
1 + δ1 + Aq∗1 +B = β2 q

∗
2

+δ2 + Aq∗2 +B

β2 q
∗
2 + δ2 + Aq∗2 +B = β3 q

∗
3 + δ3,

The solution is A = −1, B = 1. Thus, if the road authority sets tolls on links 1, 2
as

θ1(q1) = 1− q1, θ2(q2) = 1− q2,

then (q∗1, q
∗
2, q
∗
3) is an optimal response of the travelers and the optimal value of

the total travel time for the road authority will be reached. �

Note that in Example 2.1 the toll is decreasing with the traffic flow rate, such that
drivers have incentive to use the link 3, which is untolled, when congestion ap-
pears. Other option to obtain the same result would be to toll link 3 with obtaining
the same result.

3 Neurosimulation
In this section the application of neurosimulator FAUN in solving the problem (P) will
be explained. In the following text the concept of supervision learning will be first
introduced, followed by introduction of neurosimulator FAUN.

3.1 Supervised learning
Let function g : Rn → Rm assign to each vector x(i) ∈ Rn a vector y(i) ∈ Rm, i.e.,
yi = g

(
x(i)
)
. We will refer to the pair

(
x(i),y(i)

)
as to the i-th pattern of the function

g. The vector x(i) will be called the input vector (of g) and the vector y(i) will be called
the output vector (of g).

Supervised learning constitutes one way of how to find the function g given a set of
o patterns (see Knig et al. (2005)). It is of a special interest when other methods like
regression methods do not lead to satisfactory results.

An artificial neural network (ANN) can be thought of as a simple mathematical formula
with parameters called weights (see Knig et al. (2005) for details). The result of super-
vised learning applied on function g is an approximation function gapp (ANN) with an
appropriately chosen vector of weights w. The goal of supervised learning with ANN
is to find a function gapp : Rn → Rm, which is approximating the function g in the best
way.

There are several criteria that can be used to validate whether the function gapp is “close
enough” to g. In our approach the so-called validation error εv, introduced below, for
each pattern (xi, yi), i = 1, 2, . . . , o has to be minimal.

On congestion pricing Stackelberg games in dynamic traffic networks 7

The set of o patterns is divided into a set of t training patterns and a set of o−t validation
patterns. The weights of w are optimized only for the t training patterns, while the
validation patterns are used to prevent overtraining. Roughly said: When the training
error εt becomes small, but the validation error εv grows, the ANN learns the patterns
“by heart” and looses its interpolation and extrapolation abilities. For a given vector of
weights w the training and the validation errors are calculated with the error functions

εt(w)
def
=

1

2

t∑
i=1

m∑
k=1

(gapp
k (x(i); w)− y(i)

k)2,

εv(w)
def
=

1

2

o∑
i=t+1

m∑
k=1

(gapp
k (x(i); w)− y(i)

k)2,

(13)

where gapp
k and y(i)

k , k = 1, 2, . . . ,m, refer to the k-th entry of gapp and y(i), respec-
tively. An important property of gapp is that it has derivatives of all finite orders in the
components of x(i).

An ANN is trained iteratively, i.e., εt is decreased by adaption of w, until εv increases
for two consecutive iterations (prevention of overtraining). The training stops before a
local minimum of εt is reached. Weight upgrades witer+1−witer can be calculated with
any minimization algorithm, e.g., a first derivative method such as the steepest descent,
or a second derivative method such as Newton’s method. For first derivative methods
the iterative sequence

witer+1 = witer + η
(
εt

(
witer

)
, gradwεt

(
witer

))
∆w

(
εt(w

iter), gradwεt

(
witer

))
,

(14)
with the search direction ∆w and step length η, applies. Numerical methods for con-
strained nonlinear least-squares problems (see Nowak & Weimann (1998)) are sequen-
tial quadratic programming (SQP) methods and generalized Gauss-Newton (GGN) meth-
ods, which can exploit the special structure of the Hessian matrix of εt (see Deuflhard
(2004), Fletcher (2000), Gill et al. (2004)). SQP and GGN methods can automatically
overcome most of the training problems of ANN such as flat spots or steep canyons of
the error function εt. Advantages of these methods are:

• A much better search direction ∆w is calculated in comparison to common train-
ing methods, e.g., ∆w := gradwεt for the gradient method (back propagation).

• The step length η is optimized permanently in contrast to common training meth-
ods with fixed step length. The number of learning steps is reduced significantly
(factor 10 to 1000).

• Only εt, gradwεt, and εv are required which mainly can be computed by very
fast matrix operations. For other ANN topologies, e.g., radial basis functions, an
efficient code for gradwεt can also be deduced by automatic differentiation.

• Maximum and minimum of each weight can be set easily (box constraints).

• The total curvature of the ANN can be constrained (prevention from ANN oscil-
lations).

• Convexity and monotonicity constraints can be set.

8 TRAIL Research School, Delft, October 2008

User

Operating
system:

Windows,
Linux, etc.

Online and
a posteriori

graphics
Local GUI

User interface
software

Web
front-end,
thin client

architecture

Single/dual
core

compute
server

Single/dual
core

personal
computer

Resource
dispatching
middleware

and hardware

Multiple
processors
via MPI

Multiple
processors

via grid
computing

FAUN kernel
Kernel

software

offline

1

temporarilyonline 2

2a 2b 2c

Figure 1: 3-layer architecture of the FAUN software suite. Users choose between local in-
stallation (1) or web front-end to access FAUN (2). The middleware distributes
tasks user-definable to the FAUN compute kernel on one (2a) ore many proces-
sors (2b and 2c). Applications of every layer are independently replaceable and
available for Windows and Linux.

3.2 Neurosimulator FAUN 1.1

There are many commercial and public domain (freeware and shareware) neurosimula-
tors, e.g., SNNS, MemBrain, or FANN. The neurosimulator FAUN is portable on Unix,
Windows, and other operating systems. The training and learning algorithms of FAUN
are based on well-known numerical methods for constrained optimization problems
and nonlinear least-squares problems. FAUN has fully automatic prevention from over-
learning (adaptable drop out rule). FAUN has an implementation on parallel, vector,
and grid computers. FAUN synthesizes functions from high-dimensional input-/output-
relations. The architecture of the neurosimular FAUN can be seen in Figure 1. For
more information about neural networks and neurosimulator FAUN, see, e.g., Breitner
(2004); Breitner et al. (2000); Knig et al. (2005).

4 Solution of the dynamic optimal toll design problem

In this section an algorithm for finding the solution of (P) is presented.

Although the matrix of toll functions Θ defined in (8) can in general consist of any of
actual traffic flow rates, in the case studies we will restrict ourselves to linear functions

On congestion pricing Stackelberg games in dynamic traffic networks 9

of link volumes, i.e.,

Θ
def
=

max

(
γ1

1
x1
1

s1
+ δ1

1, 0
)

. . . max

(
γ1
|A|

x1
|A|
s1

+ δ1
|A|, 0

)
...

max

(
γ
|K|
1

x
|K|
1

s1
+ δ

|K|
1 , 0

)
. . . max

(
x
|K|
|A|

s|A|
γ
|K|
|A| + δ

|K|
|A|, 0

)
 , γk

a , δ
k
a ∈ R,

(15)

where the link volume xk
a [veh] is the number of drivers present on link a at the begin-

ning of the k-th time interval (link volume) and sa [km] is the length of link a.

We assume that there exist γmin, δmin, γmax, δmax ∈ R such that

γmin ≤ γk
a ≤ γmax, δmin ≤ δk

a ≤ δmax, ∀k ∈ K,∀a ∈ A, (16)

and that the condition (9) is satisfied.

The algorithm consists of following parts:

• Computing sample points of the total travel time function

– Outer loop - grid search
– Inner loop - C-load algorithm for solving the dynamic traffic assignment

• Application of FAUN 1.1 simulator

– Training of the neural networks and choosing the most suitable candidate
– Minimizing the function given by the chosen neural network

In the following subsections we will describe individual parts of the solution process.

4.1 Computing sample points of the total travel time function
This algorithm has two built-in optimization procedures: outer loop and inner loop. Let
n ∈ N and m ∈ N be given. Let us define sets N, M, and SN,M as follows:

N ,

{
γmin, γmin +

γmax − γmin

M
, . . . , γmax

}
, (17)

M ,

{
δmin, δmin +

δmax − δmin

N
, . . . , δmax

}
, (18)

SN,M ,
{

Θ : ∀γk
a ∈ N, ∀δk

a ∈M satisfying (9) and (16)
}
. (19)

The set SN,M will be called the set of admissible toll matrices.

In the outer loop of the algorithm the grid search is applied. In each step of the outer
algorithm an element of SN,M is randomly selected and used as an input for the inner
loop. By this way a “grid” of sample points of the total travel time is created.

In the inner loop the dynamic traffic assignment including dynamic route choice model,
aiming to determine a stochastic dynamic user-equilibrium based on the actual travel
costs, is applied. The C-load algorithm is applied here (Bliemer (2001a)). The dynamic
link parameters are recomputed using the Dynamic network loading (Chabini (2002)).
The DNL model is the heart of the DTA model and is also the most computationally

10 TRAIL Research School, Delft, October 2008

intensive part. To update route flow rates in each iteration the method of successive
averages (MSA) is adopted on the route flow level (see Patriksson (1994); Staňková
et al. (2008a)). The convergence of the inner loop is verified using so-called relative
dynamic duality gap ε(i) defined as

ε(i) =

∑
(r,s)∈RS

∑
p(r,s)∈P(r,s)

(
c

(r,s),k,(i)
p − π(r,s),k,(i)

)
f

(r,s),k,(i)
p∑

(r,s)∈RS π
(r,s),k,(i)

· d(r,s),k (20)

Here π(r,s),k,(i) is the minimal route travel time for travelers departing from origin r to
destination s during the k-th time interval as computed in the i-th iteration. If the rela-
tive duality gaps of two consecutive iterations are close enough, i.e., if |ε(i) − ε(i−1)| <
εmax with a given small positive number εmax, the algorithm is terminated.

Pseudocode for computing sample points of the total travel time function
Step 1 (Initialization)

Download the network G(N ,A), define K,RS, P(r,s), T , travel demands, εmax (1� εmax > 0);
define µ, n, m, N, M, SN,M , TTT :=∞;
Define ε(1), ε(0), such that

∣∣ε(1) − ε(0)∣∣ > εmax, set network empty.
Step 2 (Outer loop: Grid search)

for all N, M, Θ ∈ SN ,M do
Step 3 (Inner loop: C-load algorithm for Dynamic traffic assignment)

i:=i+1;
while |ε(k+1) − ε(k)| > εmax do for all k ∈ K

Step 3a) Compute dynamic link costs from (3) and dynamic route costs from (4);
Step 3b) Determine the route choices of travelers for each k ∈ K;
Step 3c) Update dynamic route flows using MSA;
Step 3d) Perform DNL to obtain dynamic link flows;

end do;
Compute the total travel time function TTT corresponding to Θ;
Return Θ, TTT ;

end do;

4.2 Application of FAUN 1.1 simulator
The grid search produces the value of the total travel time function at discrete posi-
tions in the parameter space. A sample is then a combination of toll parameters and
corresponding total travel time value.

While it might be possible to try to solve the problem (P) with the grid search only, this
approach has two main drawbacks. The grid search is extremely time consuming (if the
precise outcome is needed) and the result of the grid search is a set of discrete points,
not an analytical description of the function. It would speed up the analysis, if the total
travel time could be computed for arbitrary values of the parameter space. This leads to
the adopting of the ANN approach.

Pseudocode for applying ANN to the total travel time function
Step 1 (Initialization)

Prepare the grid search data for use with FAUN by splitting input and output;
Set appropriate scaling parameters for the data;

On congestion pricing Stackelberg games in dynamic traffic networks 11

Set number of ANN to train successfully N ;
Set appropriate worst accepted validation quality;
Prepare FAUN for parallel computation.

Step 2 (FAUN training)(Finding appropriate ANN)
do N times in parallel;

Select random W ;
while εv in (13) does not grow for two consecutive steps do

reduce εt in (13) by following the gradient descent on W in (14);
end while
if εv is acceptable

return and save W ;
else if

reinitialize W ;
end if

end do
Step 3 (Postprocessing)

Export the best ANN using W ;
Minimize the ANN;
Return the minimal W and TTT.

Since the resulting ANN is smooth and twice differentiable, standard minimization pro-
cedures can be applied. In our approach Matlab procedure fmincon was used.

The grid search is applied on the neighborhood of the coordinates in which the mini-
mum of the total travel time is reached to check whether the outcome of the algorithm
is appropriate. With sufficiently small validation error εv this will be always the case.

5 Case studies

In this section case studies with the Chen network consisting of 6 links, 2 origin-
destination pairs, and 6 routes will be investigated (depicted in Figure 2). Only link
1 is tollable, the toll is defined by (15).

1

link 3 link 5 link 6link 2

link 1 link 43

2

5

4

Figure 2: Chen network

Since the problem to be solved is multidimensional and it is hard to see the nonlinearity
and nonnconvexity of its objective function, in Figure 3 the total travel time function of
the static problem (problem defined for one time interval) defined on the Chen network,

with toll given by θ1
def
= a

x
(1)
1

s1
+ b = a q1

(1)

s1
+ b, a, b ∈ R, θ1 ≥ 0, is depicted. For more

information about this problem, see Staňková et al. (2008b).

12 TRAIL Research School, Delft, October 2008

 22600

 22800

 23000

 23200

 23400

 23600

 23800

 24000

 24200

-10
-8

-6
-4

-2
 0

 2

 2 2.5 3 3.5 4 4.5 5 5.5 6

 22600

 22800

 23000

 23200

 23400

 23600

 23800

 24000

 24200

a
b

(a)

 22600

 22800

 23000

 23200

 23400

 23600

 23800

 24000

 24200

to
ta

l t
ra

ve
l t

im
e

in
 m

in
ut

es

-10 -8 -6 -4 -2 0 2

a

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

b

(b)

Figure 3: Plot and map of objective function of a static problem with toll set to a x1
(1)

s1
+ b.

5.1 Case study 1
Four time intervals are considered, i.e., K = {1, 2, 3, 4}. The link properties and the
travel demands are depicted in Table 1. The other parameters are set as: µ = 0.2,
ε = 0.05, α = 8 [C/h], γmin = −10, δmin = −5, γmax = 10, δmax = 5.

Table 1: Link properties and demands in Case study 1.

(a)

a sa ϑmax
a ϑcrit

a ϑmin
a Jjam

a Ca

1 7.5 150 90 20 50 1500
2 15 120 70 10 150 3500
3 15 120 70 10 150 3500
4 10 150 90 20 50 1500
5 15 120 70 10 150 3500
6 15 120 70 10 150 3500

(b)

(r, s) d(r,s),1 d(r,s),2 d(r,s),3 d(r,s),4

(1, 5) 2000 8000 8000 3000
(3, 5) 1000 1500 2000 1500

The algorithm introduced in the previous section was applied, with 33620 training
data, 13297 validation data, and worst accepted validation error equal to 1.1%. Six-
teen clusters were used to compute the problem in a parallel way, where both grid
search and neurosimulation were parallelized. The neural network function that inter-
polates the total travel time function the best is smooth, twice differentiable, with more
local minima and one global minimum. The minimum 1.4173 · 104 hours was found at
[γ1

1 , δ
1
1, γ

2
1 , δ

2
1, γ

3
1 , δ

3
1, γ

4
1 , δ

4
1]

= [−0.50, 0.20,−0.03, 1.19, 0, 0,−0.04, 3.96]. Note that for the first and forth interval
the optimal toll is decreasing with the current traffic volume.

With no toll the total travel time reaches 1.9542 · 104, the optimal time-varying (but
traffic-flow independent) tolls are θ1

1 = 2.3 C,θ1
2 = 6.6 C, θ3

2 = 9.5 C, θ4
1 = 7.4 C, and

yield total travel time of 1.7844 · 104 hours.

The computational time of the FAUN simulator was 10.23 hours, the computational
time of the grid search was 35.21 hours. This time can be decreased by using more
clusters to solve the problem.

On congestion pricing Stackelberg games in dynamic traffic networks 13

5.2 Case study 2
In this case study the number of time intervals will be increased to 8, with travel de-
mands depicted in Table 2.

Table 2: Travel demands - Case study 2

(r, s) d(r,s),1 d(r,s),2 d(r,s),3 d(r,s),4 d(r,s),5 d(r,s),6 d(r,s),7 d(r,s),8

(1, 5) 2000 4000 6000 8000 8000 6000 4000 2000
(3, 5) 1000 2000 3000 4000 4000 3000 2000 1000

Also, there are no boundaries on parameters of linear toll functions and only 14122
training data and 9301 validation data were used. Worst accepted validation quality
was set to 1.1%. The best-trained neural network was minimized using Matlab again.
This function is again twice differentiable, with multiple local minima, and one global
minimum 29149.00 at [γ1

1 , δ
1
1, γ

2
1 , δ

2
1, γ

3
1 , δ

3
1, γ

4
1 , δ

4
1, γ

5
1 , δ

5
1, γ

6
1 , δ

6
1, γ

7
1 , δ

7
1, γ

8
1 , δ

8
1]

= [−0.02, 2.62, −0.04, 3.20, 0.4, −0.93, 0.01, −1.32, 0.01, 0.99, 0.05, 0.40, 0, 0,
0.02, −0.24].

Optimal toll decreasing with the current traffic volume appears in the first time interval
and in the second time interval. With no toll the total travel time reaches 39659.20 hours.
The optimal time-varying (but traffic-flow independent) tolls yield the total travel time
of 34822.60 hours.

The computational time of the FAUN simulator was 7.15 hours, the grid search took
26.11 hours. This time can be decreased by using more clusters to solve the problem.
From the tests made after the computation it follows that the obtained solution is very
accurate in its neighborhood (with an error of 1%), although a lower number of training
and validation data was used.

5.3 Discussion
In both case studies the traffic-volume (and hence traffic-flow) dependent toll improved
the system performance remarkably. Also, phenomena of the toll decreasing with traffic
volume was observed. The natural explanation for this phenomena is that link 1 got
very congested and for improvement of the system performance there was a necessity
to decrease the traffic on this link.

The grid search is very time consuming, although the network used is very small. The
speed of the solution process can be increased by further parallelization of both fazes
of the solution process.

Generally, the time-varying but traffic-flow invariant toll can never lead to better out-
come than traffic-flow dependent toll. This follows from the fact that the dynamic
optimal toll design problem with traffic-flow invariant toll is a special case of (P). See
Staňková et al. (2008b) for further explanation.

14 TRAIL Research School, Delft, October 2008

6 Conclusions & future research
In this paper a solution method for the dynamic optimal toll design problem with the
second-best flow-dependent tolling was proposed and presented on small case studies.
The problem was solved with use of neurosimulator FAUN 1.1. From a game theory
viewpoint the problem of the optimal toll design problem fits within a framework of
so-called inverse Stackelberg games.

The proposed solution method is applicable on general traffic networks and in real-
time problems of the optimal toll design problem character. However, some issues to
speed up the solution process have to be resolved in the case of real-time applications.
The mostly computationally intensive part is a grid search to find sufficient number of
samples as inputs for the neural network simulation. Parallelization of this process is
possible, and it was done also in the case studies presented in this paper. However,
much more processors have to be used in the real-time case.

Real-time application of our approach to large-scale problems is being investigated,
where the tolls are set as functions of the past traffic flow rates in the network.

In our model the travel demand was assumed fixed. Extension of the existing model to
the problem with elastic demand is possible.

Acknowledgments
This research was carried out within the framework of the Next Generation Infrastruc-
tures Foundation project and the TRAIL Research School.

The authors are grateful to Institut für Wirtschaftsinformatik, Gottfried Wilhelm Leib-
niz Universität Hannover, for cooperation and access to the neurosimulator FAUN 1.1.

References
Arnott, R., A. de Palma, R. Lindsey (1990) Economics of a bottleneck, Journal of
Urban Economics, 27, pp. 11–30.

Başar, T., G. J. Olsder (1999) Dynamic Noncooperative Game Theory, SIAM, Philadel-
phia.

Bagchi, A. (1984) Stackelberg Differential Games in Economic Models, Springer-
Verlag, Berlin, Germany.

Bard, J. F. (1991) Some properties of the bilevel programming problem, Journal of
Optimization Theory and Applications, 68, pp. 371–378.

Bliemer, M. C. J. (2001a) Analytical Dynamic Traffic Assignment with Interacting User-
Classes, Ph.D. thesis, TRAIL Thesis Series, Delft University of Technology, Delft, The
Netherlands.

Bliemer, M. C. J. (2001b) Analytical dynamic traffic assignment with interacting usser-
classes, Ph.D. thesis, The Netherlands TRAIL Research School, Delft, The Nether-
lands.

On congestion pricing Stackelberg games in dynamic traffic networks 15

Braid, R. (1989) Uniform versus peak-load pricing of a bottleneck with elastic demand,
Journal of Urban Economics, 26, pp. 320–327.

Breitner, M. H. (2000) Robust optimal onboard reentry guidance of a space shuttle:
Dynamic game approach and guidance synthesis via neural networks, Journal of Opti-
mization Theory and Applications, 107, pp. 484–505.

Breitner, M. H. (2004) Usage of artificial neural networks for the numerical solution
of dynamic games, in: Vincent, T. L., ed., Proceedings of the Eleventh International
Symposium on Dynamic Games and Applications, Tuscon, Arizona, vol. 1, University
of Arizona Press, pp. 62–79.

Breitner, M. H., P. Mehmert, S. Schnitter (2000) Coarse- and fine-grained parallel com-
putation of optimal strategies and feedback controls with multilayered feedforward neu-
ral networks, in: Nowak, A., ed., Proceedings of the Ninth International Symposium on
Dynamic Games and Applications, Adelaide, Australia.

Chabini, I. (2002) Analytical dynamic network loading problem: Formulation, solution
algorithms, and computer implementations, Transportation Research Record: Journal
of the Transportation Research Board, 1771, pp. 191–200.

Defermos, S., F. Sparrow (1971) Optimal resource allocation and toll patterns in user-
optimized transport networks, Journal of transport economics and policy, 5, pp. 184–
200.

Deuflhard, P. (2004) Newton Methods for Nonlinear Problems. Affine Invariance and
Adaptive Algorithms, Springer, Berlin.

E. T. Verhoef, P. N., P. Rietveld (1996) Second-best congestion pricing: the case of an
untolled alternative, Journal of Urban Economics, 40(3), pp. 279–302.

Fisk, C. (1980) Some developments in equilibrium traffic assignment, Transportation
Research Part B, 14, pp. 243–255.

Fletcher, R. (2000) Practical Methods of Optimization, John Wiley & Sons, New York.

Gill, P. E., W. Murray, M. H. Wright (2004) Practical optimization, Academic Press,
London.

Hansen, P., B. Jaumard, G. Savard (1992) New branch and bound rules for linear bilevel
programming, SIAM journal on Scientific and Statistical Computing, 13, pp. 1194–
1217.

Joksimovič, D., M. C. J. Bliemer, P. H. L. Bovy (2004) Optimal toll design problem
in dynamic trafic networks-with joint route and departure time choice, Transportation
Research Records, 1923, pp. 61–72.

Knig, S., F. Kller, M. H. Breitner (2005) FAUN 1.1 User Manual, Institut fr
Wirtschaftsinformatik, Gottfried Wilhelm Leibniz Universitt Hannover.

Lotito, P., J.-P. Quadrat, E. Mancinelli (2005) Traffic assignment and Gibbs-Maslov
semirings, Contemporary Mathematics, 377.

16 TRAIL Research School, Delft, October 2008

Mettenheim, H.-J. v., M. H. Breitner (2005) Neural network forecasting with high per-
formance computers, in: Hofer, E. P., E. Reithmeier, eds., Proceedings of the Thirteenth
International Workshop on Dynamics and Control, Shaker, Aachen, pp. 33–40.

Mettenheim, H.-J. v., M. H. Breitner (2006) Dynamic games with neurosimulators and
grid computing: The game of two cars revisited, in: Proceedings of the 12th Interna-
tional symposium on dynamic games and applications, INRIA, France.

Nowak, U., L. Weimann (1998) A family of newton codes for systems of highly nonlin-
ear equations. algorithm, implementation, Tech. Rep. TR 91-10, Konrad Zuse Zentrum,
Berlin.

Olsder, G. J. (2005) Phenomena in inverse Stackelberg problems, in: Regelungstheorie
11, Mathematisches Forschungsinstitut Oberwolfach, Germany, pp. 603–605.

Patriksson, M. (1994) The Traffic Assignment Problem: Models and Methods, VSP, The
Netherlands.

Patriksson, M., R. T. Rockefellar (2002) A mathematical model and descent algorithm
for bilevel traffic management, Transportation Science, 36(3), pp. 271–291.

Smulders, S. (1988) Modelling and filtering of freeway traffic flow, Report OS-
R8706,Centre of Mathematics and Computer Science, The Netherlands.

Staňková, K., G. Olsder, M. Bliemer (2008a) Dynamic road pricing with traffic-flow
dependent tolling, in: Proceedings of the 87th Transportation Research Board Annual
Meeting, CD, Washington D.C., USA.

Staňková, K., G. Olsder, M. Bliemer (2008b) Flow-dependent tolling in a second-best
road pricing: A game theory approach, submitted to a journal.

Staňková, K., G. J. Olsder, M. C. J. Bliemer (2006) Bilevel optimal toll design problem
solved by the inverse Stackelberg games approach, Urban transport, 12, pp. 871–880.

Verhoef, E. T. (2002) Second-best congestion pricing in general networks. heuristic
algorithms for finding second-best optimal toll levels and toll points, Transportation
Research Part B, 36, pp. 707–729.

Vickrey, W. (1969) Congestion theory and transport investment, The American Eco-
nomic Review, 59(2), pp. 251–260.

Wardrop, J. G. (1952) Some theoretical aspects of road traffic research, in: Proceedings
of the Institute of Civil Engineers, Part II, pp. 325–378.

Yilidirim, M. B., D. W. Hearn (2005) A first best toll pricing framework for variable
demand traffic assignment problems, Transportation Research Part B, 39, pp. 659–678.

