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1 Basics

The period doubling bifurcation describes what happens when λ passes through a bi-
furcation valueλ0 whereFλ0

(x) = x andF ′
λ0
(x) = −1. On one side ofλ0 there is a

single attracting fixed point. On the other side the attracting fixed point becomes a
repelling fixed point, and an attracting periodic orbit witha 2-cycle arises.

2 Periodic doubling bifurcation theorem

In this text, we will assume thatFλ (x)
def
= F(x,λ ) with λ = 0 has a fixed pointx0 = 0

with F ′
λ0
(x0) = F ′

0(0) =−1.1

Note that the partial derivative ofF(x,λ )− x with respect tox is equal to−2 at
(x0,λ0)= (0,0).As this derivative is nonzero, so we can locally solve forxas a function
of λ : there is (locally) a unique branch of fixed points,x0 = x0(λ ), equal tox0 = 0 for
λ0 = 0. For the sake of simplicity, we will writex0 instead ofx0(λ ), bearing in mind
thatx0 is in factλ -dependent.

Let L(λ ) be the derivative ofFλ with respect tox at the fixed point, i.e., let

L(λ ) def
=

∂ F
∂ x

(x0,λ ).

Let
F2(x,λ ) def

= F2
λ (x).

Notice that
(

F2
λ
)′
(x) = F ′

λ (Fλ (x)) ·F
′
λ (x)

by the chain rule. Therefore,

(F2
λ )

′′(x) = F ′′
λ (Fλ (x))

(

F ′
λ (x)

)2
+F ′

λ (Fλ (x))F ′′
λ (x), (2.1)

which is equal to zero forx= x0 = 0 andλ = λ0 = 0. In other words,

∂ 2F2

∂ x2 (x0,λ0) =
∂ 2 F2

∂ x2 (0,0) = 0. (2.2)

1In fact, with a little “abuse” of notation, in this text we will freely interchangeFλ (x) andF(x,λ).
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Now we will construct the hypothesis about second and third partial derivatives ofFλ
(with respect tox) while we have to make sure thatL(λ ) really passes through−1,
i.e.,2

dL
dλ

(0) 6= 0.

To understand what hypothesis regarding the derivatives ofFλ makes sense to make,
we will differentiate (2.1) once more with respect tox:

(

F2
λ
)′′′

(x) = F
′′′

λ (Fλ (x))
(

F ′
λ (x)

)3
+2F ′′

λ (Fλ (x))F ′′
λ (x)F ′

λ (x)

+F ′′
λ (Fλ (x)) F ′

λ (x)F ′′
λ (x)+F ′

λ (Fλ (x))F ′′′
λ (x).

At (x,λ ) = (x0,λ0) = (0,0) this simplifies to

−2
∂ 3F
∂ x3 (0,0)−3

(

∂ 2F
∂ x2 (0,0)

)2

. (2.3)

Now we can state the theorem:

Theorem 2.1 (Period doubling bifurcation) Let Fλ ∈ C 3 and let

F ′
0(0) =−1, (2.4)

dL
dλ

(0)> 0, (2.5)

2
∂ 3F
∂ x3 (0,0)+3

(

∂ 2F
∂ x2 (0,0)

)2

> 0. (2.6)

Then there are non-empty intervals(λ1,0) and(0,λ2) andε > 0 so that

1. If λ ∈ (λ1,0) then Fλ has one repelling fixed point and one attracting periodic
orbit with a 2-cycle in(−ε,ε).

2. If λ ∈ (0,λ2) then F2
λ has a single fixed point in(−ε,ε) which is in fact an

attracting fixed point of Fλ .

Proof
The proof can be divided into 6 steps:

• Step 1

Let H(x,λ ) def
= F2

λ (x,λ )− x. Then H and its first two partial derivatives with
respect tox become zero atx0. Equations (2.3) and (2.6) give

∂ 3 H
∂ x3 (0,0)< 0.

One of the roots ofH(x,λ ) def
= F2(x,λ )−x atx= x0 = 0, λ = λ0 = 0 corresponds

to the fact that(x0,λ0) = (0,0) is a fixed point. That means that there exists
P(x,λ ) such that

H(x,λ ) = (x− x0)P(x,λ ). (2.7)

2Note that for the class of functions that we are dealing with during this course this condition is always
satisfied.
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• Step 2
Then

∂ H
∂ x

(x,λ ) = P+(x− x0)
∂ P
∂x

(x,λ ),

∂ 2H
∂ x2 (x,λ ) = 2

∂ P
∂x

(x,λ )+ (x− x0)
∂ 2P
∂x2 (x,λ ),

∂ 3H
∂ x3 (x,λ ) = 3

∂ 2P
∂x2 (x,λ )+ (x− x0)

∂ 3P
∂x3 (x,λ ).

This means thatP(0,0) = 0 and∂ P
∂x (0,0) = 0, while

∂ 3H
∂ x3 (0,0) = 3

∂ 2P
∂x2 (0,0).

Thus

∂ 2P
∂ x2 (0,0)< 0. (2.8)

• Step 3
Let us first recall the Implicit function theorem (I will state it in general form with
all parts unlike at the lecture, just to refresh your memory about this theorem,)

Theorem 2.2 (Implicit function theorem) Suppose f: D→R,D⊂R
n, has f(α)=

µ for someα = (α1, . . . ,αn)∈ D andµ ∈R, while ∂ f
∂ xn

(α) 6= 0. Then the follow-
ing statements hold:

1. There is a function g(x1, . . . ,xn−1) defined near(α1, . . . ,αn−1)∈D∩(Rn−1×
{αn}), such that

f (x1, . . . ,xn−1,g(x1, . . . ,xn−1)) = µ .

2. Nearα, the level set

L f (µ)
def
= {ξ ∈ D| f (ξ ) = µ}

is an (n−1)-dimensional manifold, and its tangent plane atα is perpen-
dicular to ∇ f (α).

3. The derivative of g at(α1, . . . ,αn−1) is given by

g′(α1, . . . ,αn−1) =

[

∂ g
∂ x1

. . .
∂ g

∂ xn−1

]

(α1, . . . ,αn−1)

=



−

∂ f
∂ x1

(α)

∂ f
∂ xn

(α)
. . .−

∂ f
∂ xn−1

(α)

∂ f
∂ xn

(α)



 .
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Now, we would like to apply the implicit value theorem toP(x,λ ) = 0 and solve
this equation forλ as a function ofx. This will allow us to determine the fixed
points ofF2

λ that are not fixed points ofFλ , i.e., the periodic points with a 2-cycle.
For being able to apply Theorem 2.2, we have to show that3

∂ P
∂ λ

(0,0)< 0. (2.9)

To prove (2.9) we compute∂ H
∂ x both from its definitionH(x,λ ) def

= F2(x,λ )− x
and from (2.7) and we obtain

∂ H
∂ x

(x,λ ) =
∂ F
∂ x

(F(x,λ ),λ )
∂ F
∂ x

(x,λ )−1

= P(x,λ )+ (x− x0)
∂ P
∂ x

(x,λ ).

Recall thatx0 is the fixed point ofFλ and that

L(λ ) def
=

∂ F
∂ x

(x0,λ ).

So substitutingx= x0 into the preceding equation gives

(L(λ ))2−1= P(x,λ ).

Differentiating this expression with respect toλ and settingλ = 0 gives

∂ P
∂ λ

(0,0) = 2L(0)L′(0) =−2L′(0),

which is negative by assumption (2.5).

• Step 4
By the implicit function theorem, (2.9) implies that there is aC 2-functiong(x)
defined nearx= x0 = 0, being the unique solution ofP(x,g(x)) ≡ 0. Recall that
P(x,λ ) and its first derivative with respect tox become zero at(x,λ ) = (x0,λ0) =
(0,0). Also, according to implicit function theorem,

g′(x) =−
∂ P
∂ x
∂ P
∂ λ

.

Therefore,
g′(0) = 0

and

g′′(0) =−
∂ 2 P
∂ x2

∂ P
∂ λ

(0,0)< 0,

3Or that
∂ P
∂ λ

(0,0) > 0.
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since both nominator and denominator are negative. Asg′(0) = 0 andg′′(0)< 0,
g(x) has a maximum atx= x0 = 0, and this maximum value is 0. In the(x,λ )-
plane. the graph ofg(x) looks locally approximately like a parabola in the lower
half plane with its vertex at the origin. Clearly, there are no fixed points for
positiveg(x) and two fixed points forg(x)< 0.

• Step 5
Condition (2.5)

dL
dλ

(0)> 0

and the fact thatL(0) =−1 imply thatL(λ )<−1 for λ < 0 andL(λ )>−1 for
λ > 0, so the fixed pointx0 is repelling to the left and attracting to the right. As
for the 2-periodic points, we wish to show that

∂ F2

∂ x
(x,g(x)) < 1

for x< 0. Now (2.2) andg′(0) = 0 imply that 0 is a critical point for this function
and the value at this critical point is(L(0))2 = 1. To complete the proof we must
show that the critical point is a local maximum. So we must compute the second
derivative atx0 = 0..

• Step 6
Defining

φ(x) def
=

∂ F2

∂ x
(x,g(x)),

φ ′(x) =
∂ 2 F2

∂ x2 (x,g(x))+
∂ 2F2

∂ x∂ λ
(x,g(x))g′(x),

φ ′′(x) =
∂ 3 F2

∂ x3 (x,g(x))+2
∂ 3 F2

∂ x2 ∂ λ
(x,g(x))g′(x)

+
∂ 3 F2

∂ x∂ λ 2 (x,g(x))(g
′(x))2+

∂ 2F2

∂ x∂ λ
(x,g(x))g′′(x).

Sinceg′(0) = 0, the middle two terms in the last expression become 0 and the
last term becomes

dL
dλ

(0)g′′(0)< 0

by condition (2.5) and the fact thatg′′(0)< 0. We have computed the first term,
i.e. the third partial derivative, in (2.3) using condition(2.4) and then (2.6) im-
plies that this expression is negative. This completes the proof of the period
doubling bifurcation theorem.2
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3 Concluding notes

There are variants of Theorem 2.1 with signs in (2.5) and (2.6). Therefore, we may have
an attracting fixed point merging into two repelling points of period two to produce
a repelling fixed point, and/or the direction of the bifurcation may be reversed. As
discussed during the lecture, condition (2.6) can be replaced by a condition involving
higher derivatives ofFλ (x) with respect tox.
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