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1 Basics

The period doubling bifurcation describes what happenswihpasses through a bi-
furcation valueAo whereF, (x) = x and F/(O(x) = —1. On one side of\g there is a
single attracting fixed point. On the other side the attracfixed point becomes a
repelling fixed point, and an attracting periodic orbit wétl2-cycle arises.

2 Periodic doubling bifurcation theorem
In this text, we will assume thd, (x) d:EfF(x,/\) with A = 0 has a fixed poirtg = 0
with F{_(x0) = F5(0) = —1.1

Note that the partial derivative &f(x,A) — x with respect tax is equal to—2 at
(X0,7A0) = (0,0). As this derivative is nonzero, so we can locally solvefas a function
of A : there is (locally) a unique branch of fixed points = (A ), equal toxg = 0 for
Ao = 0. For the sake of simplicity, we will write instead ofxg(A ), bearing in mind
thatxg is in factA -dependent.

LetL(A) be the derivative oF, with respect tox at the fixed point, i.e., let

def OF
L) =% (0,).

Let dof
F2(xA) £ FL(X).
Notice that .
(F?) (0 = F3 (FA(x) - Fy (%)
by the chain rule. Therefore,
(F2)"(x) = Fy (FA (%) (F3 () + F5 (Fa (%) Fy'(x), (2.1)
which is equal to zero fox = Xp = 0 andA = Ag = 0. In other words,

9%F? 92F?
2 X0:A0) = —5-5(0,0)=0. (2.2)

Lin fact, with a little “abuse” of notation, in this text we Witeely interchangeF) (x) andF (x,A).




Now we will construct the hypothesis about second and thartigl derivatives of,
(with respect tax) while we have to make sure thitA) really passes through1,

ie.? i
a0 #0.

To understand what hypothesis regarding the derivativés ahakes sense to make,
we will differentiate (2.1) once more with respectto

"

(F2)" (9 =Fy (FA(9) (F{ () >+ 2F} (Fa (%)) F () F5 (%)
+F (Fa(¥) By ) B (%) +Fy (Fa () By’ (%)
At (X, A) = (Xo,A0) = (0,0) this simplifies to
93F 0°F ?
—ZW(O,O) -3 (W(O’O)) ) (2.3)
Now we can state the theorem:

Theorem 2.1 (Period doubling bifurcation) Let F< ¢ and let

F5(0) = -1, (2.4)

dL

o (@>0, (2.5)
9°F 9°F ?

25-5(0.0)+3 (W(O’ 0)) > 0. (2.6)

Then there are non-empty intervdl;, 0) and (0, A,) ande > 0 so that

1. If A € (A1,0) then K, has one repelling fixed point and one attracting periodic
orbit with a2-cycle in(—¢, €).

2. If A € (0,A2) then F? has a single fixed point ifi—¢,€) which is in fact an
attracting fixed point of |

Pr oof
The proof can be divided into 6 steps:

e Step 1
Let H(x,A) def FZ(x,A) —x. ThenH and its first two partial derivatives with
respect to« become zero aty. Equations (2.3) and (2.6) give
93H
W(O’ 0) <O0.

One of the roots difl (x,A) d:esz(x,/\ )—xatx=xp=0,A = Ap=0 corresponds

to the fact that(xp,Ag) = (0,0) is a fixed point. That means that there exists
P(x,A) such that

H(X,A) = (Xx—Xo) P(x,A). (2.7)

2Note that for the class of functions that we are dealing withirdy this course this condition is always
satisfied.




e Step 2

Then
oH oP
KA =P+ (x—%0) O (X A),
9°H ,0P 9%P
W(Xa)\) x == (XA) + (X—XO)W(XM\%
d3H %P 3P

5 M) = 355 (00) + (k=30 55 (0 ).

This means tha®(0,0) = 0 and4? (0,0) = 0, while

9*H 9?P
5 (0.0 =3-7(0,0).
Thus
9?P
52 (0.0 <0. (2.8)
e Step 3

Let us first recall the Implicit function theorem (I will s&ait in general form with
all parts unlike at the lecture, just to refresh your memdugd this theoren®)

Theorem 2.2 (Implicit function theorem) Suppose® — R, D C R", has f(a) =

u forsomea = (as,...,0n) € Dandu € R, while g—xfn(a) # 0. Then the follow-
ing statements hold:

1. Thereisa functions,...,x, 1) defined neafas,...,an 1) € DN(R"1x
{an}), such that

f(X17 cee s Xn—1, g(xla e 7Xn—1)) = H.

2. Neara, the level set

def

Li(u) ={& €DIf(§) = u}

is an (n— 1)-dimensional manifold, and its tangent planecats perpen-
dicularto O f(a).

3. The derivative of g atas, ..., an_1) is given by

7] 0
dg(ai,....0n 1) = L?—)?l dxngl] (a1,...,0n-1)

[%m agm}
@ ,

@) Fi(a)




Now, we would like to apply the implicit value theoremPgx, A ) = 0 and solve
this equation folt as a function ok. This will allow us to determine the fixed
points ofF}\2 that are not fixed points ¢ , i.e., the periodic points with a 2-cycle.
For being able to apply Theorem 2.2, we have to showthat

oP

a—)\(o, 0) <O0. (2.9)
To prove (2.9) we comput%% both from its definitionH (x,A) d:esz(x,/\) —X
and from (2.7) and we obtain

0H oF oF
W(X’)\) = W(F(X’)‘)’)‘) W(X’/\)_l
:P(x,)\)+(x—xo)%(x,/\).

Recall thatxg is the fixed point of, and that

def OF
L(A) = 5, (x0,A).

So substituting« = Xg into the preceding equation gives
(L(A))?=1=P(xA).

Differentiating this expression with respectXand settingA = 0 gives
—(0,0) = 2L(0)L'(0) = —2L'(0),

which is negative by assumption (2.5).

e Step 4
By the implicit function theorem, (2.9) implies that theged%-functiong(x)
defined neax = Xp = 0, being the unique solution &f(x,g(x)) = 0. Recall that
P(x,A) and its first derivative with respectxdecome zero gix, A ) = (Xp, Ag) =
(0,0). Also, according to implicit function theorem,

aP
g =—29%.
oA
Therefore,
g(0)=0
and
ﬁs
/1 _ a
g'(0) = —2£(0,0) <0,
D)
30r that P
H(O' 0)>0



since both nominator and denominator are negativey’ @ = 0 andg”(0) < O,
g(x) has a maximum at = xp = 0, and this maximum value is.0n the (x,A )-
plane. the graph af(x) looks locally approximately like a parabola in the lower
half plane with its vertex at the origin. Clearly, there acefixed points for
positiveg(x) and two fixed points fog(x) < O.

Step 5
Condition (2.5)

dL
J(O)>0

and the fact thalt (0) = —1 imply thatL(A) < —1 forA <0 andL(A) > —1 for

A > 0, so the fixed poinky is repelling to the left and attracting to the right. As
for the 2-periodic points, we wish to show that

2
O x.g) <1

ox
for x < 0. Now (2.2) andy' (0) = 0 imply that O is a critical point for this function
and the value at this critical point {£(0))? = 1. To complete the proof we must
show that the critical point is a local maximum. So we must pota the second
derivative atxg = 0..

Step 6
Defining
det OF2
QO(X) - W(Xag(x))v
02 F2 02 F2 ,
¢ (x) = W(ng(x)) + m(x,g(x))g (%),
03 F2 03 F2
// _ /
03 F2 02F2

S (%,900) (0 (0)+ 5 (x,9() ¢ (¥).

Sinced'(0) = 0, the middle two terms in the last expression become 0 and the

last term becomes
dL

dA
by condition (2.5) and the fact thgt (0) < 0. We have computed the first term,
i.e. the third partial derivative, in (2.3) using conditi¢h4) and then (2.6) im-
plies that this expression is negative. This completes thefpf the period
doubling bifurcation theorem.

(0)g"(0) <0



3 Concluding notes

There are variants of Theorem 2.1 with signs in (2.5) and(ZBerefore, we may have
an attracting fixed point merging into two repelling poinfsperiod two to produce
a repelling fixed point, and/or the direction of the bifuioatmay be reversed. As
discussed during the lecture, condition (2.6) can be repléay a condition involving
higher derivatives oF, (x) with respect to.



