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Irreversible prey diapause as an optimal strategy
of a physiologically extended Lotka–Volterra model

Kateřina Staňková · Alessandro Abate · Maurice W. Sabelis

Abstract We propose an optimal control framework to describe intra-seasonal
predator–prey interactions, which are characterized by a continuous-time dynamical
model comprising predator and prey density, as well as the energy budget of the prey
over the length of a season. The model includes a time-dependent decision variable
for the prey, representing the portion of the prey population in time that is active, as
opposed to diapausing (a state of physiological rest). The predator follows autonomous
dynamics and accordingly it remains active during the season. The proposed model
is a generalization of the classical Lotka–Volterra predator–prey model towards non-
autonomous dynamics that furthermore includes the effect of an energy variable. The
model has been inspired by a specific biological system of predatory mites (Acari:
Phytoseiidae) and prey mites (so-called fruit-tree red spider mites) (Acari: Tetrany-
chidae) that feed on leaves of apple trees—its parameters have been instantiated based
on laboratory and field studies. The goal of the work is to understand the decisions
of the prey mites to enter diapause (a state of physiological rest) given the dynamics
of the predatory mites: this is achieved by solving an optimization problem hinging
on the maximization of the prey population contribution to the next season. The main
features of the optimal strategy for the prey are shown to be that (1) once in diapause,
the prey does not become active again within the same season and hence diapause is an
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irreversible process; (2) for the vast majority of parameter space, the portion of prey
individuals entering diapause within the season does not decrease in time; (3) with an
increased number of predators, the optimal population strategy for the prey is to start
diapause earlier and to enter diapause more gradually. This optimal population strategy
will be studied for its ESS properties in a sequel to the work presented in this article.

Keywords Predator–prey problems · Fruit-tree red spider mites · Game theory ·
Optimal control · Singular characteristics

Mathematics Subject Classification (2000) 49L20 · 92B05 · 93C15

1 Introduction

Predator–prey interactions have traditionally been modeled either as continuous-
time differential equations (Lotka–Volterra type models) or as difference equations
(Nicholson–Bailey type models) (Lotka 1920; Volterra 1926, 1978; Hopper 1987).
The latter type of models are of biological interest because they highlight that such
interactions proceed over a fixed time horizon, namely with one or more discrete gener-
ations within a season that is favorable for growth (e.g. summer in temperate regions),
whereas they are interrupted during seasons that are critical for growth (e.g. winter).
Although this feature adds to the biological realism of such models, they ignore the
continuous character of the interactions during the season. Therefore, it is of inter-
est to develop general models that can account both for continuous interactions and
overlapping generations in summer seasons and discrete periods without interactions
during winter seasons (Pachepsky et al. 2008). Such general models become even
more essential when the physiological decision variables depend on the predator and
prey densities reached during summer, rather than only on reliable season indicators,
such as night/day length and temperature (Danks 1987; Tauber et al. 1986).

The motivation to consider model with these features comes in this work from
studies on the use of predatory mites (Acari: Phytoseiidae) for biological pest control of
fruit-tree red spider mites (Acari: Tetranychidae), as well as of the herbivores that feed
on and damage leaves of apple trees (Helle and Sabelis 1985a,b). In this environment,
winters (covering 6–7 months) are usually harsh and as such endanger the survival of
prey (Helle and Sabelis 1985a) and (even more so) that of predators (Fitzgerald and
Solomon 1991; Helle and Sabelis 1985a). Predator and prey densities in the following
summer season depend on their numbers entering a state of physiological rest (the so-
called diapause state) near the end of the previous year. The decision to enter diapause
promotes the survival of the individual during winter and emerges from induction by a
combination of sufficiently long night lengths and low temperatures (Veerman 1992).
However, using another similar spider mite species (more amenable to experimental
treatment), it was shown that the decision to enter diapause also depends on predator
density during summer (Kroon et al. 2004, 2005, 2008). From the point of view of the
prey mite this behavior makes intuitive sense as it faces a grim future with increasing
predator densities and thus an increased risk of death: it may then do better by giving
up reproduction, moving away from leaves to twigs and branches (a refuge from



predation, but without food) and by entering diapause earlier than indicated by the
predictors of season length (night length and temperature). However, if too many prey
mites would make the same decision, this could create a negative feedback on the
predatory mite population, so that at some point in time the prey mites would profit
from the decreased predation risk by terminating their diapause and returning to the
leaves. This leads us to conclude that the prey’s decision to enter diapause is part of a
game where the predator is the leader and the prey needs to find a best response to the
predator. Another complicating factor is that an early diapause raises the demands on
the energy store of the individual prey mite, which needs to cover a longer period before
terminating diapause at the beginning of the next summer season—the energy level at
diapause termination will determine the reproductive capacity of the prey mite (Kroon
and Veenendaal 2005). Thus, the decision to enter diapause within a year will depend
on the current internal energy store of the prey mite, as this will have far-reaching
consequences for winter survival and reproduction in the summer season of the next
year. Given the negative feedback between predator and prey and the complexity of the
decisions that prey mites are faced with making, it is virtually impossible to intuitively
pinpoint the most likely strategies that will emerge from natural selection.

In this article, we employ an optimal control approach to find the best strategies for
the prey population as a whole. If there is an optimal solution, then this may not neces-
sarily be the evolutionarily best solution for any given prey individual, since selection
acts on individuals being the vehicles of genes. Moreover, adaptive landscapes (sensu
Wright (1932)) may shift in the course of invasion by mutants. Therefore, it remains to
be seen whether the intra-seasonal optimal solutions obtained in this work are robust
against invasions of mutants with alternative strategies (Gyllenberg and Service 2011;
Metz 2008).

Historical background of our model: The optimal control model that we propose has
been developed as an extension of the classical Lotka–Volterra predator–prey model
(Lotka 1920; Volterra 1926). Our model includes a control mechanism that allows the
prey individuals being active or in diapause.

In the literature, the classical Lotka–Volterra model has been extended to a frame-
work allowing for n different interacting populations (Gouzé 1993), as well as to an
input-dependent setup (Kolmanovskii and Koroleva 1991), following the first study
of controlled predator–prey models in Goh et al. (1974). Reachability properties of
controlled Lotka–Volterra systems were studied in DeLeenheer and Aeyels (2000).
The n-dimensional Lotka–Volterra system was extended in Gouzé (1994), where a
stabilization issue was studied.

Two models have been published on questions related to the problem at hand in
this article (Akhmetzhanov et al. 2011; Gyllenberg et al. 1996). In Akhmetzhanov et
al. (2011) a controlled predator–prey model based on the simplified Lotka–Volterra
dynamics is introduced and optimal reproduction behavior of the prey is studied. This
model includes internal energy of the prey similarly to the model introduced in this
article. In Gyllenberg et al. (1996) a hybrid model including continuous mortality and
discrete reproduction at the end of the season is introduced. This model is based on
the assumption that the life span of the predator is much longer than that of the prey
and focuses mainly on inter-seasonal behavior of the system in question.



Notation: In the rest of this document, unless stated otherwise, the following notation
will be used:

n Season number
Tn Length of the nth summer season
Rn(t) Red spider mite population at time t ∈ [0, Tn], within the n-th

season
rn(t) Rescaled red spider mite population at time t ∈ [0, Tn], within

the n-th summer season
Pn(t) Predatory mite population at time t ∈ [0, Tn], within the n-th

summer season
pn(t) Rescaled predatory mite population at t ∈ [0, Tn], within the

n-th summer season
En(t) Internal energy of the prey at time t ∈ [0, Tn], within the n-th

summer season
un(t) Decision variable (control) of the red fruit-tree spider mites

(prey), within the n-th summer season
a(τ ), b(τ ), c(τ ) Additional variables for the characteristic system in reverse time
S Singular surface (as used in the analysis of the optimal control

problem)
C Singular surface for the simplified case with full energy
τ1 Time of the first event (optimal strategy of the prey becoming

non-zero in reverse time τ )
τ2 Time of the second event (optimal strategy of the prey becoming

1 after being lower than 1 in reverse time τ )
τ3 Time of the third event (optimal strategy of the prey becoming

lower than 1 after being equal to 1 in reverse time τ )
Jn Intra-seasonal fitness function for the prey, within the n-th season
J K Inter-seasonal fitness function for the prey over K years
V Cost function in reverse time

The subscript n is dropped whenever the study focuses on a single season.
The article is structured as follows. Section 2 introduces an inter-seasonal (multiple

seasons) model, discusses and motivates the structure of its intra-seasonal (single
season) part, and hits at extensions toward a game. With focus on a single season,
Sect. 3 formally studies the optimal strategies of the prey. Section 4 elaborates on the
biological interpretation of the obtained results. Section 5 discusses possible extensions
and sketches future work.

2 Model of the interaction between predatory and fruit-tree red spider mites

The model describes the interactions between predatory mites (predator) and fruit-tree
red spider mites (prey). We begin by formulating a control-dependent model for the
intra-seasonal (single season) dynamics (Sect. 2.1) and then extending it to the inter-
seasonal (multiple seasons) dynamics (Sect. 2.2). Section 2.3 discusses the biological
relevance of the modeling choices.



The model allows characterizing the seasonal strategy of the prey as a solution of an
optimal control problem. Each year is divided into two parts: the summer and winter
season. The predator is assumed to be active during the entire summer season. With
regards to the interaction between predatory and fruit-tree red spider mites, during
the summer season both species can feed (which leads to reproduction), respectively
by predation and by feeding on leaves of apple trees. Furthermore, prey can enter
diapause, a quiescent state that protects it from the environment and from predation—
this in particular entails the decoupling between the species. During the winter season
the species do not interact, and their populations independently decline at a constant
rate. The dynamics during winter are thus trivial and will be simply modeled by a reset
of the energy and population levels. Over an entire year, we model the summer season
with continuous dynamics, while the winter season is described by discrete dynamics.

In the remainder of the text the terms “summer season” and “winter season” are
used interchangeably with the terms “summer” and “winter”, respectively.

2.1 Summer interactions

In this section we focus on the dynamics of the prey (fruit-tree red spider mites) in the
summer season, assuming the predator (predatory mites) continues to forage actively
over the entire summer.

The (summer) fitness function for the prey Jn models its survival capability, and is
related to the number of the individuals which enter diapause during the summer. The
shape of the fitness is as follows:

Jn(un) =
Tn∫

0

(1 − un(t ′))En(t ′)Rn(t
′)dt ′. (2.1)

In (2.1) the constant Tn denotes the length of the n-th summer. With the function un

(no explicit time dependence) we denote the strategy for the prey, namely un(t), t ∈
[0, Tn]. The decision variable un(t) indicates the portion of the prey population being
active at time t : un(t) ∈ [0, 1], for t ∈ [0, Tn]. Rn(t) represents the prey population at
time t . Accordingly, the quantity (1 − un(t))Rn(t) represents the number of the prey
individuals in diapause at time t . Furthermore, the variable En(t) ∈ [0, 1] represents
the (normalized) energy that is available to an average individual within the prey
population: if En(t) = 0, then the average individual is dead, whereas En(t) = 1
represents maximal fitness.

The system dynamics within the n-th summer season is modeled as follows (here
Pn(t) denotes the predator population in time t):

dEn(t)

dt
= −m (1 − un(t))En(t) + d un(t) − d un(t) En(t), (2.2)

dPn(t)

dt
= −α Pn(t) + β γ un(t) Pn(t) Rn(t), (2.3)

dRn(t)

dt
= −α Rn(t) + γ un(t) En(t) Rn(t) − β un(t) Pn(t) Rn(t). (2.4)
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The quantities α, β, γ > 0 and m, d > 0 are given parameters. Both the number of
predators Pn(t) and that of prey Rn(t) decrease at a rate α. In Eq. (2.3) the number of
predators Pn(t) increases at a rate that is proportional to the predation, represented by
the product of the number of actual active prey un(t) Rn(t) and the number of predators
Pn(t) with feeding rate βγ . Whenever active, the prey population rate change in (2.4)
decreases—due to predation—proportionally to the number of active prey and number
of predators (at rate β), whereas it increases—due to feeding and reproduction—
proportionally to the number of prey and the average internal energy (with rate γ ).
The energy of the prey in (2.2) varies as follows: whenever active (feeding), it increases
proportionally to the distance to its maximum (1 − En(t)) with rate d; on the other
hand, whenever in diapause it decreases proportionally to the actual average energy
of the prey (with rate m), as individuals in diapause slowly utilize their energy.

Remark 1 Let us analyze the equilibrium dynamics obtained for extreme values of
the input. The points P∗

n = R∗
n = 0 are always equilibria. Whenever un ≡ 0, they

represent with E∗
n = 0 the only asymptotically stable equilibrium point. Conversely,

whenever un ≡ 1, the model admits two equilibria for (E∗
n , P∗

n , R∗
n): (1, 0, 0), and

(1,
γ−α

β
, α

βγ
). To ensure nonnegativity of equilibria, γ has to be higher than α (we

will see below that a further requirement on β to obtain quantities larger than one will
not be necessary). Moreover, equilibrium (1, 0, 0) is unstable, whereas (1,

γ−α
β

, α
βγ

)

is marginally stable (namely, related to periodic trajectories over the two populations).
Selecting a un ∈ (0, 1) leads to the requirement d ≥ m, which allows for values of
d En
d t ≥ 0.

Remark 2 The dynamical model in Eqs. (2.2)–(2.4) is a straightforward generalization
of the known Lotka–Voltera, predator–prey model (Lotka 1920; Volterra 1926), which
is obtained when En(t) = 1, un(t) = 1,∀t ∈ [0, Tn]. Notice that the energy value
En = 1 is an equilibrium for the dynamics whenever the control is kept constant and
equal to one. In other words, Lotka–Volterra dynamics represent a special configuration
of the model, where the energy is at its maximum, and where the prey is always active
(namely, feeding and breeding).

The optimal behavior of the prey maximizes its fitness in (2.1). We will denote
this optimal ratio by u∗

n(t), t ∈ [0, Tn], which can be found by solving the following
optimal control problem (here arg sup reads as “arguments of the supremum” and
indicate the points at which the supremum occurs):

{
u∗

n = arg sup
un

∫ Tn
0 (1 − un(t ′)) En(t ′) Rn(t ′)dt ′,

subject to: (2.2) − (2.3) − (2.4).
(2.5)

2.2 Winter dynamics

As mentioned at the beginning of Sect. 2, the winter dynamics is modeled by discrete
resets in the predator and prey population levels, as well as in the internal energy of
the prey.



Optimality of irreversible prey diapause in an extended Lotka–Volterra model

It is observed that only a portion of the predators entering winter survives. On the
other hand, the prey has a chance to survive winter only if it enters it in diapause,
therefore a portion of the prey entering the diapause during the summer will survive
the winter that follows. However, it is observed that the survival rate of the diapaused
prey is higher than the survival rate of the (active) predator. Moreover, due to the
winter, the energy level of the (diapaused) prey is supposed to drop.

If we consider the dynamics over K seasons, for n ∈ {1, . . . , K − 1} the resets of
the state variables can be defined as follows:

Pn+1(0) = ln Pn(Tn),

Rn+1(0) = ιn

Tn∫

0

(1 − un(t ′))Rn(t ′) dt ′,

En+1(0) = on En(Tn),

where 1 > ιn > ln > on > 0. The reset constants can be functions of the (winter)
season length.

The fitness function of the prey over K years can be written as

J K (u) =
K∑

n=1

Jn(un),

and it is a function of the strategy u = (u1, . . . , un).
Investigating the optimal strategy for the prey over multiple seasons (years) is an

interesting goal, which is related to the evolutionarily stability of the optimal strategy
found. Bifurcation analysis can be used in order to determine parameter domains for
which the proposed optimal strategy is evolutionarily stable (Diekmann et al. 2007).
Comparison of the outcome of our research with the research defining under which
conditions evolution indeed leads to the optimal strategy found by maximizing certain
criteria (Metz 2008; Metz et al. 2008) can then be made.

As a first step for the study of the optimal behavior over multiple seasons, this work
focuses on the solution of the optimal control problem within a single (n-th) summer
season.

2.3 Discussion on the model

In the proposed model, prey have to trade-off between the number of active and dia-
paused individuals, since diapaused individuals increase their number of descendants
in the next generation (season). The optimal pattern of such a decision depends on both
the environment and the physiological state of an individual (McNamara and Houston
1996). To determine the optimal life history of an individual it is useful to incorpo-
rate physiological variables in the model (McNamara and Houston 1996; Persson and
Roos 2003). In our model we have embedded a dynamical energy variable. The prey
individuals are thus described by two variables: their energy (physiological variable)



and their population. Therefore, the problem of maximizing the number of descen-
dants can be translated into a “dynamic model of energy allocation and investment”
(Perrin and Sibly 1993).

While the internal energy of the prey E(t) ∈ [0, 1] is important for the system
behavior, the internal energy of the predator is not essential to characterize the optimal
behavior of the prey. In fact, one can assume that this internal energy is proportional to
the number of active prey, because these are being predated once all of its individuals
are active.

Most existing energy allocation models appear to be focused on a single individual,
not taking into account potential population-dependent environmental feedback (see
the review (Perrin and Sibly 1993) and (Perrin et al. 1993; Lika and Kooijman 2003)).
The model considered in this paper describes growth of a population size in interaction
with the growth of another population, and thus accounts for the influence of the
individual population size as well as for active-diapause strategy of individuals. As
discussed, in our model the population-dependent environmental feedback is made
explicit through an energy variable. This also allows embedding season-dependent
environmental variability into the model. We also provide a more formal argument
(see Appendix A) on the necessity to include energy in the model in order to effectively
study the diapause process.

We focus on the optimal strategy of the prey within one summer, while the
predator is present and active. The main goal is to see what type of strategy the
prey employ in presence of the predator and whether their entering diapause is
reversible or not (i.e. whether—once in diapause—they ever become active again).
The study of the multi-seasonal dynamics of the system (such as the evolutionarily
stability, optimal behavior of the prey for multiple seasons) is a future step of this
research.

While our objective is to find the optimal behavior of the prey in the summer
season, one can also focus on the situation in which the predatory mites decide their
active/diapause ratio during the summer season in response to external conditions or
food shortage. In such a case the problem formulated in (2.5) can be extended into a
Stackelberg game (Başar and Olsder 1999; Staňková 2009), with the predator acting as
the leader and the prey as the follower. Games of the Stackelberg type are needed, since
the fitness function of the predator would differ from that of the prey (the predatory
mites have chance to survive the winter even if they are in the diapause at the end of the
season). This fact, together with the asymmetry of the roles between the predator and
prey is a motivation for defining the problem as a Stackelberg game. As the Stackelberg
game is more general than a Nash game, the solution of the Stackelberg game would
coincide with the solution of the Nash game if the hierarchy between the predatory
and prey mites would not play a role (Başar and Olsder 1999). A Stackelberg game
formulation between the predator and prey represents a natural extension of our model.

3 Study of the structure of the optimal strategy of the prey
within a summer season

In this section we discuss the solution of the optimal control problem in (2.5), focusing
on the optimal strategy of the prey within a single summer season. Recall that the



control structure of the predator is fixed, which leads to focusing on the strategy of
the prey. Following Bellman’s approach (1957), we apply the method of singular
characteristics (Melikyan 1998; Melikyan and Olsder 2010) to formalize the solution
of the problem.

Let us start with parameterizing the model. Using information from Helle and
Sabelis (1985a,b) regarding the average number the fruit-tree red spider mites eaten
by an adult predatory mite per day and the average reproduction and death rates of
both predatory and fruit-tree red spider mites, we set the parameters α, γ, and m
in (2.5) to the following values: α = 1

20 , γ = 1
5 , m = 1

250 . Moreover, note that
the following substitution can be used in (2.5): Pn = 1

β
pn, Rn = 1

β
rn . Consequently,

the parameter β does not play a role in (2.5) and can thus be disregarded: notice
that the new population variables pn and rn have now arbitrary units, which will
simplify the dynamical analysis of the model.

In the remainder of the text we will focus on the optimal strategy of the prey within
one (n-th) summer season, therefore we will drop the subscript n in pn, rn, E R

n , u R
n ,

and Tn , defining the variables p, r, E, u, and T instead.

3.1 Formal statement of the optimal control problem

Problem (2.5) can be rewritten as

u∗ = arg sup
u

T∫

0

(1 − u(t ′))E(t ′) r(t ′)dt ′, (3.1)

subject to the following dynamics:

dE

dt
= − 1

250
(1 − u) E + d u − d u E, (3.2)

d p

dt
= − 1

20
p + 1

5
u p r, (3.3)

dr

dt
= − 1

20
r + 1

5
u E r − u p r, (3.4)

with the control input u(t) ∈ [0, 1], the energy of the prey E(t) ∈ [0, 1], whereas p(t)
represents the (rescaled) concentration of the predator and r(t) that of the prey, for
t ∈ [0, T ], with summer length T , expressed in days. The only parameter left within
the dynamical relations is d ∈ ( 1

250 , 1], which affects the rate of change of the energy
level.

The two classical approaches to the solution of problem (3.1), subject to (3.2)–
(3.4), are Pontryagin’s maximum principle and Bellman’s dynamical programming
approach (Bellman 1957; Bertsekas 2003; Başar and Olsder 1999; Kirk 1970; Dreyfus
2002). Here, we choose the latter approach, since Pontryagin’s maximum principle
provides only necessary conditions that the optimal solution must satisfy, and the
validation of which of these candidate solutions is optimal can be a difficult task.



Bellman’s dynamical programming approach provides, on the other hand, sufficient
conditions that the solution must satisfy.

As standard in Bellman’s approach, let us introduce a reverse time τ = T − t and
a corresponding value function

V (p, r, E, t, u) =
T∫

T −t

(1 − u(t ′))r(t ′)E(t ′)dt′. (3.5)

The value function (3.5) is to be maximized for any τ ∈ [0, T ] as the the prey selects
an optimal strategy denoted by u∗(τ ) over [0, T ]. Notice that, whenever dealing with
the new time variable τ , we shall refer to the dynamics of the corresponding variables
along this “reverse time”. In order to find the optimal control, the following Hamilton–
Jacobi–Bellman (HJB) equation has to be satisfied (Bellman 1957):

−∂V

∂τ
+ sup

u

(
∂V

∂ E

(
− 1

250
(1 − u) E + d u − d u E

)
+ ∂V

∂p

(
− 1

20
p + 1

5
u p r

)

+∂V

∂r

(
− 1

20
r + 1

5
u E r − u p r

)
+ (1 − u) E r

)
= 0. (3.6)

Let us introduce the additional variables a
def= ∂V

∂ E , b
def= ∂V

∂p , c
def= ∂V

∂r , obtaining

the following characteristic system (Melikyan 1998) (here E ′ = dE
dτ

, and similarly for
the remaining variables):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E ′ = 1
250 (1 − u)E − d u + d u E,

p′ = 1
20 p − 1

5 u p r,

r ′ = 1
20r + u p r − 1

5 u E r,

a′ = − 1
250 (1 − u)a − dua + 1

5 u r c + (1 − u)r,

b′ = − 1
20 b + 1

5 u r b − u r c,

c′ = 1
5 u p b − 1

20 c − u p c + 1
5 u E c + (1 − u)E .

(3.7)

3.2 Solution of the optimal control problem

As shown in Melikyan (1994), from Eq. (3.6) it can be seen that the optimal control
u∗ maximizes the quantity u S , where

S = 1

250
Ea + da − d Ea + 1

5
p rb − p r c + 1

5
E r c − E r, (3.8)

and where the quantity S is defined as S = ∂h/∂u, with h representing the argument
of the supremization in the HJB Eq. (3.6). Notice that the quantity S is a function
of the variables in (3.7) and of time—unless stated otherwise, we shall not explicitly
write out these dependencies.



The optimal control takes the following form Melikyan (1994):

u∗ = Heav S =
{

1, if S > 0,

0, if S < 0.
(3.9)

Furthermore, whenever S (τ ) = 0, then u∗(τ ) ∈ (0, 1), which denotes a mixed1

strategy.
On the other hand, if u∗(τ ) ∈ (0, 1) is optimal, then S (τ ) = 0 is invariant with

respect to τ for u∗(τ ), which implies that S (τ ) = 0, as well as S ′(τ ) = 0,S ′′(τ ) =
0 (and similarly for higher-order derivatives), which can be shown by application of
the Jacobi brackets (Melikyan 1994).

The transversal conditions (Melikyan 1998, 1994) follow from the equations:

a(T ) = b(T ) = c(T ) = 0,

and from the assumption that the number of the players and the energy level has to be
nonzero at the end of the summer season (if the energy level is equal to zero, then the
prey population did not survive; furthermore, if either population level is at zero, both
have gone extinct):

E(T )
def= E f > 0, p(T )

def= p f > 0, r(T )
def= r f > 0.

Let us denote the value of S for state variables evaluated at time T by S (T ). It
follows that S (T ) = −E(T ) r(T ) < 0, and, therefore,

u(T ) = Heav(S (T )) = 0.

Remark 3 Let us emphasize the result above as a first conclusion on the shape of the
strategy of the prey: the strategy ends up in a diapause state at the end of the summer
season. This conclusion can also be directly inferred from the shape of the cost function
in (3.1).

It is possible to emit the characteristic field (Melikyan 1998) in reverse time, starting
from the terminal surface at time T , with u∗(τ ) = 0. This yields, for τ ≥ 0:

⎧⎨
⎩

E(τ ) = E f e
τ

250 ,

p(τ ) = p f e
τ
20 ,

r(τ ) = r f e
τ
20 ;

(3.10)

⎧⎨
⎩

a(τ ) = 500
27 r f (e

τ
20 − e− τ

250 ),

b(τ ) = 0,

c(τ ) = 500
27 E f (e

τ
250 − e− τ

20 ).

(3.11)

Note that the expressions in (3.11) contain constants from the quantities in (3.10), as
expected from (3.7). The presence of explicit solutions of the characteristic system

1 Mixed strategies are often referred to as singular or intermediate strategies.



Fig. 1 Event time τ1, corresponding to the optimal control u∗(τ1) becoming positive. Recall that the
formulation is in reverse time

allows a precise study of events related to the behavior of the optimal strategies—this
is further elaborated in the next section.

3.2.1 Study of the time of the event when u∗(τ ) = 0 changes to u∗(τ ) ∈ (0, 1)

We investigate the time τ1 related to the verification of the condition S (τ1) = 0, which
leads to the situation when u∗(τ1) becomes positive (see pictorial representation in
Fig. 1).

The continuity of the characteristic trajectories (Melikyan 1998) in (3.10), (3.11)
implies that equation S (τ1) = 0 can be rewritten as follows:

r f
(

− 2

27
E1(e− τ1

250 − e
τ1
20 ) − 500

27
d(e− τ1

250 − e
τ1
20 )

+500

27
d E1(e− τ1

250 − e
τ1
20 ) + 500

27
p f (e

τ1
20 )2 E f (e− τ1

20 − e
τ1
250 )

−100

27
E1 e

τ1
20 E f (e− τ1

20 − e
τ1
250 ) − E1e

τ1
20

)
= 0,

where we have introduced the new quantity E1 def= E(τ1).

Remark 4 Note that the above equation is satisfied independently of the value of r f ,
the final prey density. This leads to claim that the time τ1 of the first event depends
exclusively on the number of predators at the end of the summer (p f ), on the final
energy of the prey (E f ), and is furthermore parameterized by the constant d. This
observation is interesting from a biological viewpoint, since it seems to indicate that
the event related to having the whole prey population in diapause is independent of
the concentration of the same population (which can be associated to the absence of
a form of quorum sensing).

From (3.10), let us substitute E1 = E f e
τ1
250 . Assuming as essential a nonzero value

for r f , it is possible to express the time of the first event τ1 as follows:

τ1 = 500 ln w,
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Fig. 2 Graph of the dependence of τ1 with respect to d and E f , for the case where p f = 0

with w being the smallest real-valued root of the following high-order polynomial:

625 · 108((w29 − w2)E f − w27 + 1)d + 625 · 108(w54 − w27)E f p f

+((1 − 125 · 108)w31 + (125 · 108 + 1)w4)(E f )2

+(3,125 · 106w29 + 25 · 107w2)E f . (3.12)

As discussed above, note that τ1 depends on the energy of the prey at the end of the
summer E f , the number of individuals of the predator at the end of the summer p f ,
and on parameter d. However, it is independent of the number of individuals of the
prey at the end of the summer r f .

The dependence of the time of the first switch τ1 on the parameters E f and d,
for the case when p f = 0, is illustrated in Fig. 2. It can be shown that values of τ1
decrease with increasing p f (see Sect. 3.4 for more details).

3.2.2 Investigation of the existence of a second event: if ∃ τ2 > τ1 : u∗(τ2) = 1, does
there ∃ τ3 > τ2 and a δ > 0 : ∀ τ ∈ (τ3, τ3 + δ], u∗(τ ) ∈ [0, 1)?

We have so far investigated the existence of τ ≥ τ1 (in reverse time), which are such
that S (τ ) = 0 and u∗(τ ) ∈ (0, 1). We will study of the properties of u∗(τ ) over
S (τ ) = 0 in the next section. Assume that there is a time τ2 > τ1 which is associated
to the condition S (τ ) > 0: we investigate whether the condition S (τ ) = 0, τ > τ2,
can be met again (see Fig. 3 for a pictorial representation). More precisely, we look
for a time τ3 > τ2 and a δ > 0 such that, for any τ ∈ (τ3, τ3 + δ], u∗(τ ) ∈ [0, 1).



Fig. 3 Study of the existence of a second event in reverse time: can the optimal strategy u∗ again admit
values within the interval [0, 1), after being equal to 1?

Whenever u∗(τ ) = 1 the characteristic system takes the following form (again in
reverse time):

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

E ′ = −d + d E,

p′ = 1
20 p − 1

5 pr,

r ′ = 1
20r + p r − 1

5 E r,
a′ = −da + 1

5r c,
b′ = − 1

20 b + 1
5rb − rc,

c′ = 1
5 pb − 1

20 c − pc + 1
5 Ec.

(3.13)

System (3.13) is not explicitly integrable. However, from (3.13) (top equation) with
an initial condition E2 ∈ (0, 1), we can get an explicit expression for E if u∗ = 1 and
τ ≥ τ1:

E(τ ) = 1 + (E2 − 1)ed (τ−τ1), (3.14)

which is monotonically decreasing with τ and lead to the following non-negativity
condition:

τ ≤ τ1 − 1

d
ln(1 − E2)

def= τmax
2 ,

where E2 = E(τ2) ∈ (0, 1). The value τmax
2 represents an (possibly infinite) upper

bound on the length of time during which the prey is physiologically active.

Proposition 3.1 (Nonexistence of a second event) The optimal control problem in the
reverse time τ , defined by the system of characteristics in (3.7), admits at most one
event in u, namely if u(τ ) takes the value 1, then u(τ ′), τ ′ ≥ τ never enters again the
interval [0, 1).

Proof See Appendix B.

3.3 Properties of the optimal control over the singular curve: optimal mixed
strategies

So far it has been shown that the optimal control u∗(τ ) starts (at the end of the summer,
in reverse time) at a value equal to 0, that may enter a singular state at time τ1 (possibly



Fig. 4 We investigate the properties mixed strategies in time: is a non-monotonic profile of u∗ possible,

or is du∗
dτ

nondecreasing (in reverse time) within S = 0?

switching discontinuously to the value 1), and that whenever it takes the value 1, it
remains equal to that value thereafter, until τ = T (which corresponds to the start of
the summer season in real time). Alternatively, it may happen that either u∗(τ ) remains
equal to 0 for all τ (i.e., S (τ ) < 0 for all τ ∈ [0, T ]), or that u∗(τ ) will move away
from the value 0, while remaining bounded within (0, 1) (namely, within the surface
S (τ ) = 0), thus never reaching the value 1 (this would be related to the condition
S (τ ) ≤ 0 for all τ ∈ [0, T ]).

In the following we study the behavior of the optimal control u∗ on the singular
surface S = 0. We are especially interested in “regularity” properties for u∗, and
particularly in possible ranges of the parameter value d for which u∗(τ ) is a nonde-
creasing function (in reverse time) whenever S (τ ) = 0: this would allow ruling out
the biologically inconsistent behavior depicted in Fig. 4.

The optimal control u∗ on the singular surface is denoted by us , and recall that we
focus on the case us < 1. The characteristics on the singular surface are obtained by
solving the following system of equations:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E ′ = 1
250 (1 − us)E − dus + dus E,

p′ = 1
20 p − 1

5 us pr,

r ′ = 1
20r + us pr − 1

5 us Er,

a′ = − 1
250 (1 − us)a − dusa + 1

5 usr c + (1 − us)r,

b′ = − 1
20 b + 1

5 usrb − usrc,

c′ = 1
5 us p b − 1

20 c − us p c + 1
5 us Ec + (1 − us)E .

(3.15)

The initial conditions for the dynamics above can be derived from (3.11) by setting
τ = τ1 (recall again that the characteristics are continuous (Melikyan 1998):

⎧⎪⎨
⎪⎩

E(τ1)
def= E1 = E f e

τ1
250 ,

p(τ1)
def= p1 = p f e

τ1
20 ,

r(τ1)
def= r1 = r f e

τ1
20 ;

(3.16)



Fig. 5 Numerical simulations suggest that if the number of predators increases, then the prey individuals
begin to enter diapause earlier but more gradually

⎧⎪⎨
⎪⎩

a(τ1)
def= a1 = 500

27 r f (e
τ1
20 − e− τ1

250 ),

b(τ1)
def= b1 = 0,

c(τ1)
def= c1 = 500

27 E f (e
τ1
250 − e− τ1

20 ).

(3.17)

From the relations S = 0,S ′ = 0,S ′′ = 0, and from the set of Eq. (3.15), a, b,

and dus

dτ
can be expressed in terms of us, c, E, p, and r . While the expression of dus

dτ
can be expressed as a function of the system variables, its form does not allow for an
easy analysis. We are particularly interested in the values of d for which dus

dτ
is non-

negative: this would relate to an optimal strategy for the prey that is non-increasing
in real time. We have observed this time-dependent profile for the mixed strategies
consistently in simulations.

As a partial result, we try to find explicit values for d, for which dus

dτ
≥ 0 for all

possible r, E, and c, in the special instance of the absence of predators.

Proposition 3.2 (Non-negativity of dus

dτ
in the absence of predators) In the absence

of predators, there exists dmin such that for any E ∈ (0, 1), us ∈ (0, 1), and r, the
inequality dus

dτ
≥ 0 holds for all d > dmin.

Proof See Appendix C.

3.4 Dependence of the optimal strategy on the predator density

Biological evidence suggests that a higher predator density in the environment induces
an earlier diapause (Sabelis and Overmeer, unpublished data). Results of our analysis
are aligned with this observation, although we could not prove this claim for the entire
domain of initial parameters. Based on our reverse-time study, numerical analysis of
the roots of Eq. (3.12) have shown τ1 decreases if p f (predator population level at
the end of the summer season) increases. This leads us to claim that once the predator
concentration level increases, the prey mites should enter diapause earlier but more
gradually than if less predatory individuals were present, which would lead to a later
complete diapause state than if less predatory mites were present. Recall that we have
shown in the model that once prey individuals start entering diapause, they never
become active again. The overall behavior is depicted in Fig. 5.



Model simulations suggest the following:

– In the real time prey individuals start entering diapause earlier if the number of
predatory individuals increases.

– The moment when all prey individuals enter diapause occurs later in the season if
there are more predators at the end of the summer season.

– It is observed that in the case p 
= 0, du
dt ≤ 0, and that the number of predators

decreases as the prey start entering diapause.

4 Biological interpretation and recapitulation of the outcomes of the study

The inspiration for the development of the model has come from empirical observations
on the interaction between predatory mites and fruit-tree red spider mites on apple trees.
The spider mites feed on leaves during summer and may move away from leaves to
lay winter eggs (the diapausing stage) on twigs, branches, and trunks of the tree where
they cannot feed but are free of predatory mites. Setting model parameters to realistic
values for this system and studying the model either analytically or numerically has
lead to conclude that the following behavior of the fruit-tree red spider mites is optimal:

1. In the beginning of the summer season the prey can be in any state (all active, all
in diapause, or anything inbetween), whereas at the end of the summer season all
prey individuals are in diapause.

2. If all prey individuals are active in early summer, the prey will start entering
diapause at a certain point in time and the proportion of diapaused individuals
increases monotonically. Similarly, if only part of the prey population is active
in early summer, then all prey end up being in diapause at one point in time and
stay in diapause until next year. Yet, if all prey individuals are in diapause in early
summer, then they continue to stay in diapause until next year.

3. The time (in real time) of diapause onset state depends on the energy of the prey,
on predator population size and on the rate of energy utilization (parameter d), but
it is independent of prey population size (i.e. timing of diapause does not require
quorum sensing).

4. If predators are absent in the environment, all prey individuals are in diapause
later than if present. Empirical observations on diapause of fruit-tree red spider
mites on apple trees in the field (Sabelis and Overmeer, unpublished data) reveal
that virtually all individuals become active in early summer and starting from
a certain point in time the population gradually enters diapause, definitely not
instantly. Moreover, experimental manipulation of the predator population in the
field showed that the fruit-tree red spider mites enter diapause earlier in the presence
of predatory mites and once in diapause they stay in diapause. However, the density
of fruit-tree red spider mites had an effect on the time at which diapause was
initiated, suggesting that some form of quorum sensing (possibly via spider-mite
induced plant volatiles) takes place.

Figure 6 summarizes possible optimal strategy profiles u∗(τ ), τ ∈ [0, T ], for the
prey. Note that while we could not prove yet that the optimal strategy of the prey is
non-increasing with t for all possible d, but could show that it is indeed non-increasing



Fig. 6 Scheme of possible optimal strategies u∗ for the prey. Based on the proposed dynamics and opti-
mization problem, we have shown irreversibility and (largely) the monotonicity of the strategy profile.
Notice that the optimal strategies do not need to be continuous corresponding to the singular events in the
outcome of the optimization problem

in the special case that p = 0 for all but a small range of the parameter d. This expected
behavior has however been always observed in simulations.

5 Conclusion and research outlook

A dynamical model of the summer and winter predator–prey interactions between
mites has been described and analyzed in this article. This model is an extension of



the classic Lotka–Voltera models in that it includes not only the dynamics of predator
and prey populations, but also the dynamics of their energy level and an input for the
prey. We have considered the case where predators do not enter diapause until after
the summer season, but prey have the option to give up reproduction during summer
and enter a refuge from predation where they also stay during winter. Based on a
population fitness function defined by the the number of diapausing individuals we
developed an optimal control model to assess optimal behavior of the prey during
summer.

While the correspondence between theoretical predictions and empirical observa-
tions on mites is encouraging, there are also limitations (mostly analytical) that should
spawn new work. Moreover, it is still to be shown that optimal summer behavior of
the prey population, as derived in this study, is resistant against invasion by mutant
strategies and robust against structural modifications, such as the inclusion of predator
decisions to enter diapause or not. Ultimately, we hope to explain winter dynamics of
predatory mites and fruit-tree red spider mites based on optimal timing of diapause
induction in summer. The use of bifurcation analysis can help determining for which
parameter domains the proposed optimal strategies are evolutionarily stable.

The optimal control problem considered in this article can be readily extended to
a game-theoretical problem, provided that the predator is either active or in diapause,
without having an option to choose a mixed strategy. The more general solution is a
topic of further research.

Appendix A: Why energy has to be included in the model (quantitative
argument from Sect. 2.3)

Let us consider the instantiated model in (3.2)–(3.4), and assume that the population-
dependent environmental feedback is not explicit, namely E(t) = 1, t ∈ [0, T ]. Then
the optimization problem (3.1)–(3.4) simplifies to

u∗ = arg sup
u

T∫

0

(1 − u)rdt ′;

d p

dt
=

(
1

5
ur − 1

20

)
p,

dr

dt
=

(
1

5
u − 1

20
− u p

)
r.

Introducing a value function W (p, r, t, u) = ∫ T
T −t (1 − u)rdt′ and the new variables

b
def= ∂W

∂p and c
def= ∂W

∂r , it is possible to show that the optimal control takes the form
u∗ = Heav C , where

C =
(

1

5
pb − pc + 1

5
c − 1

)
r,



which, as in the more general case, implies that the optimal behavior of the prey is
again fully independent of the prey population level, and that u∗ = 0 at the end of the
season.

The characteristic system can be expressed as follows:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

p′ = 1
20 p − 1

5 u p r,

r ′ = 1
20r + u p r − 1

5 u r,

b′ = − 1
20 b + 1

5 u rb − u rc,

c′ = 1
5 u pb − 1

20 c − u pc + 1
5 u c + 1 − u.

With reference to the reverse time τ , selecting a u = 0 and transversal conditions
b(0) = c(0) = 0 yields:

p′ = 1

20
p ⇒ p(τ ) = p(0) e

τ
20 ,

r ′ = 1

20
r ⇒ r(τ ) = r(0) e

τ
20 ,

b′ = − 1

20
b ⇒ b(τ ) = b(0) e− τ

20 = 0,

c′ = 1 − 1

20
c ⇒ c(τ ) = 20 + e− τ

20 (c(0) − 20) = 20 − 20e− τ
20 .

Hence, the condition C = 0, related to mixed optimal strategies and us ∈ (0, 1), can
take place at time τ1 if the following condition holds:

−p(0)(e
τ1
20 )2r(0) (20 − 20 e− τ1

20 ) + 1

5
r(0)e

τ1
20 (20 − 20 e− τ1

20 ) − r(0) e
τ1
20

= r(0)(−20p(0)e
τ1
10 + 20 p(0)e

τ1
20 + 3 e

τ1
20 − 4) = 0 (6.1)

Assuming that r(0) > 0, the equality in (6.1) is satisfied if p(0) = −3+4 e− τ1
20

20 e
τ1
20 (−1+e− τ

20 )
.

Assuming that p(0) ≥ 0, a time τ1 such that u(τ1) 
= 0 exists if τ1 ≥ −20 ln 3
4 ≈ 5.75.

Furthermore, pairs (τ1, p(0)) related to possible non-zero optimal strategies for the
prey are those corresponding to the curve depicted in Fig. 7. For all the values of

(τ1, p(0)), such that p(0) < −3+4 e− τ1
20

20 e
τ1
20 (−1+e− τ

20 )
(below the curve in Fig. 7) the optimal

strategy of the prey is to switch to an active state, namely u∗(τ ) = 1 ∀τ ≥ τ1. For
all the remaining values of (τ1, p(0)), which in practice means for p(0) > 0.05 and
any τ1, the optimal strategy of the prey is to remain in diapause for the entire summer
season: this in practice would deplete the energy of the prey and therefore would lead to
its death. This leads to the conclusion that modeling the interactions of the considered
system without including the energy variable leads to inconsistent outcomes.

The argument can be generalized to models that are parameterized as in (3.3), (3.4),
that is where α and γ have not been fixed to the values 1/20 and 1/5, respectively. It
can be algebraically shown that the maximal value of he curve p(0) is upper bounded



Fig. 7 If p(0) and τ1 are situated above the red curve, then u∗ = 0 for the entire summer. (The variable
τ1 has to be higher than −20 ln 3

4 ≈ 5.75 as displayed in the left plot) (color figure online)

Fig. 8 Study of the existence of a second event in reverse time: can the optimal strategy u∗ again admit
values within the interval [0, 1), after being equal to 1?

by the quantity (γ − α) which, given the ranges of interest, is again a very small
quantity.

Appendix B: Proof of Proposition 3.1

As portrayed in Fig. 8, let us assume that there exists a time τ3 : u∗(τ3) = 1 and there

exists a δ > 0 : ∀τ ∈ (τ3, τ3 + δ] : u∗(τ ) ∈ [0, 1). Let variable E2
def= E(τ2). Setting

u∗ = 1 for τ > τ2, the energy E(τ ) satisfies

E(τ ) = 1 + (E2 − 1)ed (τ−τ2),

therefore E3
def= E(τ3) = 1 + (E2 − 1)ed (τ3−τ2). Moreover, let us introduce the

following variables: a3
def= a(τ3), c3

def= a(τ3), p3
def= p(τ3), and r3

def= r(τ3).



At time τ = τ3, the condition S = 0 has to be satisfied. Substituting expression
for E3 into equation S = 0 leads to

1

250
(1 + ed(τ3−τ2)(E2 − 1))a3 + d a3 − d(1 + ed(τ3−τ2)(E2 − 1))a3 + 1

5
p3 r3 b3

−p3r3c3 + 1

5
(1 + ed(τ3−τ2)(E2 − 1))r3c3 − (1 + ed(τ3−τ2)(E2 − 1))r3 = 0.

From this equation we can express E2 as:

E2 = 1 + a3 + 50 p3r3 b3 − 250 p3r3c3 + 50 r3 c3 − 250 r3

ed 	(250 d a3 − a3 − 50 r3 c3 + 250 r3)
, (7.1)

where we have set 	 = τ3 − τ2 > 0.
Since E2 ∈ (0, 1], the inequality (7.1) is satisfied only if

1 >
250 p3r3c3 − a3 − 50 p3r3 b3 − 50 r3 c3 + 250 r3

ed 	(250 d a3 − a3 − 50 r3 c3 + 250 r3)
≥ 0. (7.2)

Recall that if there is a second event at time τ3, then S (τ3) = 0, but also S ′(τ3) =
S ′′(τ3) = · · · = 0. From the equation S ′ = 0 the parameter a3 can be expressed in
terms of the other variables:

a3 = r3

10 d
(2 c3 − 2 c3ed 	 + 875 ed	E2 − 2,500 p3 + 375 − 125 p3 c3

+2,500 ed	 p3 + 25 p3 b3 + 500 e2 d 	(E2)
2 − 1,000 e2 d 	E2 + 2 c3ed 	E2

−2,500 ed 	E2 p3 a3 + 2,500 ded 	3 − 2,500 ded	E2

+500 e2 d	 − 875 ed	). (7.3)

Furthermore, b3 can be expressed from the equation S ′′ = 0 (after substituting
(7.3) into this same equation), and likewise c3 can be expressed from the condition
S ′′′ = 0 (after substituting expressions for a3 and b3 into this equation)—we omit
reporting the expressions for b3 and c3, as their computation is straightforward.

Denoting the nominator and denominator of the fraction in Eq. (7.2) as “Nom”
and “Den”, respectively, there are two cases characterizing the necessary conditions
in (7.2), for the existence of a τ3 > τ2 such that u(τ ) = 1 for τ ∈ [τ2, τ3] and of a
δ > 0 : ∀τ ∈ (τ3, τ3 + δ], u(τ ) ∈ (0, 1):

Case 1

0 ≤ Nom, (7.4)

0 < Den, (7.5)

0 < Den − Nom. (7.6)

Case 2

0 ≥ Nom, (7.7)



0 > Den, (7.8)

0 > Den − Nom. (7.9)

The quantities Den and Nom can be then written with E2 expressed by (7.1).
In the following, the two cases are considered in detail.

Case 1: Condition (7.4) implies

250 r3 − 50 p3 r3 b3 + 250 p3 r3 c3 − 50 r3 c3 ≤ a3, (7.10)

whereas condition (7.5) implies

a3 <
50 r3(c3 − 5)

250 d − 1
(7.11)

and condition (7.6) implies

a3 <
50 r3(ed 	 c3 − 5 ed	 − b3 p3 + 5 p3 c3 − c3 + 5)

−ed	 + 250 ed 	d + 1
. (7.12)

Note that inequalities (7.10) and (7.11) imply either

0 < −50 r3 b3 + 250 r3 c3 (7.13)

and

p3 < − 250 d(c3 − 5)

(250 d − 1)(b3 − 5 c3)
, (7.14)

or

− 50 r3 b3 + 250 r3 c3 < 0 (7.15)

and

−250 d(c3 − 5)

(250 d − 1)(b3 − 5 c3)
< p3. (7.16)

We have substituted the expressions for a3, b3, and c3 into inequalities (7.13), (7.14),
(7.15) and (7.16), respectively.

Assuming that p3 > 0, r3 > 0, E f ∈ (0, 1], and d > 1
250 , in both cases it can be

shown that

a3 >
50 r3(ed	c3 − 5 ed	 − b3 p3 + 5 p3 c3 − c3 + 5)

−ed	 + 250 ed 	 d + 1
,

which contradicts Eq. (7.12) and therefore also Eq. (7.6).



Case 2: Condition (7.7) implies

250 r3 − 50 p3 r3b3 + 250 p3 r3 c3 − 50 r3 c3 ≥ a3, (7.17)

whereas condition (7.8) implies

a3 >
50 r3(c3 − 5)

250 d − 1
(7.18)

and condition (7.9) implies

a3 >
50 r3(ed	c3 − 5 ed	 − b3 p3 + 5 p3 c3 − c3 + 5)

−ed	 + 250 ed	 d + 1
. (7.19)

Note that the inequalities in (7.17) and (7.18) imply either

0 < −50 r3b3 + 250 r3c3 (7.20)

and

p3 >
−250 d(c3 − 5)

(−1 + 250 d)(b3 − 5 c3)
, (7.21)

or

− 50 r3b3 + 250 r3c3 < 0 (7.22)

and

−250 d(c3 − 5)

(−1 + 250 d)(b3 − 5 c3)
> p3. (7.23)

We have substituted expressions for a3, b3, and c3 into inequalities (7.20), (7.21),
(7.22) and (7.23), respectively. Assuming that p3 > 0, r3 > 0, E f ∈ (0, 1], and
d > 1

250 , in both cases it can be shown that

a3 <
50 r3(ed	c3 − 5 ed	 − b3 p3 + 5 p3 c3 − c3 + 5)

− ed	 + 250 ed	d + 1
,

which contradicts Eq. (7.19) and therefore also Eq. (7.9). 
�



Appendix C: Proof of Proposition 3.2

If p = 0, the characteristic system takes the following form in reverse time:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

E ′ = 1
250 (1 − u)E − d u + d u E,

r ′ = 1
20r − 1

5 u E r,

a′ = − 1
250 (1 − u)a − dua + 1

5 u r c + (1 − u)r,

c′ = − 1
20 c + 1

5 u E c + (1 − u)E .

(8.1)

Furthermore, the surface S can be expressed as

S = 1

250
Ea + da − d Ea + 1

5
E r c − E r, (8.2)

It is again easy to check that us(0) = 0 in reverse time, and that τ1 = 500 ln w, with
w being the smallest root of the following polynomial

100 (E f )2w31 + (−25 E f − 500 d E f )w29 + 500 dw27

−100 (E f )2w4 + (−2 E f + 500 dEf )w2 − 500 d.

From (8.1), the energy level E1 of the prey entering diapause is E(τ1) = E f e
τ1
250 .

Figure 2 represents the values of τ1 as functions of d and E f . Notice that E1 ≥ 1
for E f ≥ 0.9775, therefore in the following we will assume that E f ∈ (0, 0.9775).
(Moreover, recall that d > 1/250.)

Equations S = 0,S ′ = 0, and S ′′ = 0 allow expressing a(τ ), c(τ ), and us(τ )

in terms of r(τ ) and E(τ ), respectively. Of interest to this proof, the expression for
the mixed strategy us(τ ) reads as the ratio of two polynomials:

(E(−25 E2 − 29 · 103 d E3 + 125 · 103 d2 E2 + 116 E3 − 13 · 103 d E + 230 ·
103 d2 +67,750 d E2 −375·103 d2 E))/(4 (−125 d E2 −5·103 d2 E −21 E4 −1,250 ·
103 d3 + 100 E5 − 9 · 103 d E3 + 54,250 d E4 + 531,250 d2 E2 − 875 · 103 d2 E3 +
1,250 · 103 d3 E + 250 · 103 d2 E4 − 25 · 103 E5d)).

Remarkably, the expression is independent of r , which aligns to earlier outcomes
on the independence of the prey population density.

Since us cannot by definition take values that are lower than 0 or greater than 1,
we denote the values for (d, E) for which us ∈ [0, 1] as “feasible” and we will call
those for which us 
= [0, 1] “unfeasible.” Figure 9 represents the feasibility regions for
(d, E), assuming d ∈ ( 1

250 , 1] and E ∈ (0, 0.9775]. The feasible region for the given
parameters corresponds to possible trajectories that have mixed strategies, whereas the
unfeasible region relates to trajectories that stay always in diapause mode (us = 0), or
discontinuously switch to us = 1. In either case, trajectories for the optimal strategy
will be non-decreasing in reverse time.

From S ′′′ = 0 we can derive the expression of dus

dτ
. Figure 10 plots the parts of the

feasibility region for which us is increasing and decreasing, respectively.
With focus on the feasible region, the following observations can be made:



Fig. 9 Regions of d and E for which us ∈ (0, 1]. The purple bold line corresponds to d and E for which
us = 1 and coincides with the boundary of the feasibility region (color figure online)

Fig. 10 Regions of d and E for which dus

dτ
> 0 (denoted with a +) and for which dus

dτ
< 0 (denoted

by a −). The green dashed line corresponds to the (d, E) values for which dus

dτ
= 0 (color figure online)

– For d > 0.15, no mixed strategy takes place, since the parameter space corresponds
to the unfeasible region.

– For 1
250 < d < 0.15, either

– no mixed strategy takes place if E is small, else
– a mixed strategy us takes place.



Let us further elaborate on the latter case (presence of mixed strategies) with the help
of Fig. 10. Recall that

E ′ = E

250
(1 − u) − d u(1 − E),

and assume the dynamics at time τ1 land in a region where us has negative derivative. It
can be numerically shown that the values of us are quite small in this region. Because
of the values of E > 0.5 and 1/250 < d < 0.15, E ′ > 0 persistently, given that
dus/dt < 0. This regime will be sustained until E = 1, which will force us to switch
to u∗ = 1. Given the values of the quantities of interest, this will happen for a short
interval—if d = 1

250 , the interval will be approximately less than 0.5, whereas if
d ∼ 0.15, the interval will be even smaller. 
�
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