Lecture 1: Introduction & Preliminaries

Kateřina Staňková

Statistics (MAT1003)

April 10, 2012
Outline

1 Motivation
 - What is probability theory and what is statistics?
 - Why studying probability theory and statistics?
 - What will we achieve in this course?

2 Practicalities
 - Getting to know each other
 - The rules

3 Preliminaries: Combinatorics
 - Permutations
 - Variations & combinations
 - Exercises
 - Homework - recommended exercises
 - Homework - bonus exercises
And now . . .

1 Motivation
- What is probability theory and what is statistics?
- Why studying probability theory and statistics?
- What will we achieve in this course?

2 Practicalities
- Getting to know each other
- The rules

3 Preliminaries: Combinatorics
- Permutations
- Variations & combinations
- Exercises
- Homework - recommended exercises
- Homework - bonus exercises
What is probability theory and what is statistics?

Probability theory is a branch of mathematics that deals with calculating the likelihood of an occurrence of a given event.

Statistics is the study of how to collect, organize, analyze, and interpret numerical information from data.
Probability theory

Probability theory is a branch of mathematics that deals with calculating the likelihood of an occurrence of a given event.

Statistics

Statistics is the study of how to collect, organize, analyze, and interpret numerical information from data.
Motivation: Dependence on uncertainty & biased measurements

- World more and more quantitative and data focused
- Decisions made in the face of uncertainty, with biased measurements
- Quantitative abilities and statistical knowledge needed
- Examples:
Motivation: Dependence on uncertainty & biased measurements

1. World more and more quantitative and data focused
2. Decisions made in the face of uncertainty, with biased measurements
3. Quantitative abilities and statistical knowledge needed
4. Examples:
Why studying probability theory and statistics?

Motivation: Dependence on uncertainty & biased measurements

- World more and more quantitative and data focused
- Decisions made in the face of uncertainty, with biased measurements
- Quantitative abilities and statistical knowledge needed

Examples:
Why studying probability theory and statistics?

Motivation: Dependence on uncertainty & biased measurements

- World more and more quantitative and data focused
- Decisions made in the face of uncertainty, with biased measurements
- Quantitative abilities and statistical knowledge needed
- Examples:
Goals of this course

1. To have an understanding of fundamental concepts in probability and statistics
2. To be familiar with the most frequently used probability distributions/densities and statistical procedures (statistical estimation and hypothesis tests)
3. To be able to recognize several probability distributions in real life situations to which they typically apply
Goals of this course

1. To have an understanding of fundamental concepts in probability and statistics
2. To be familiar with the most frequently used probability distributions/densities and statistical procedures (statistical estimation and hypothesis tests)
3. To be able to recognize several probability distributions in real life situations to which they typically apply
Goals of this course

1. To have an understanding of fundamental concepts in probability and statistics
2. To be familiar with the most frequently used probability distributions/densities and statistical procedures (statistical estimation and hypothesis tests)
3. To be able to recognize several probability distributions in real life situations to which they typically apply
And now . . .

1 Motivation
- What is probability theory and what is statistics?
- Why studying probability theory and statistics?
- What will we achieve in this course?

2 Practicalities
- Getting to know each other
- The rules

3 Preliminaries: Combinatorics
- Permutations
- Variations & combinations
- Exercises
- Homework - recommended exercises
- Homework - bonus exercises
Getting to know each other

Tutors

- Kateřina Staňková
 k.stankova@maastrichtuniversity.nl
 www.stankova.net
- Teresa Piovesan
 tpiovesan@student.maastrichtuniversity.nl
Getting to know each other

Tutors

- Kateřina Staňková
 k.stankova@maastrichtuniversity.nl
 www.stankova.net

- Teresa Piovesan
 t.piovesan@student.maastrichtuniversity.nl
Rules of the game ...

- Exam: 0–100 points
- Homework:
 - 0–10 bonus points (average of all homeworks)
 - time to deliver homework: 1 week
 - deadline for today homework: April 16
- Materials:
 - lectures (slides to appear on EleUM and on http://stankova.net/statistics_2012.htm)
 - the book: http://stankova.net/book.pdf – if you follow lectures, you will use it mainly for exercises
- Knowledge I expect you to have: Integration
And now ...

1 Motivation
- What is probability theory and what is statistics?
- Why studying probability theory and statistics?
- What will we achieve in this course?

2 Practicalities
- Getting to know each other
- The rules

3 Preliminaries: Combinatorics
- Permutations
- Variations & combinations
- Exercises
- Homework - recommended exercises
- Homework - bonus exercises
About this topic . . .

- “Warming up” . . .
- Literature: Section 2.3 (although we approach it slightly differently)
- “Counting” the number (♯) of possibilities to select element(s) from a group of element(s)
- Necessary step in learning how to compute probability of random events . . .
About this topic . . .

- “Warming up” . . .
- Literature: Section 2.3 (although we approach it slightly differently)
- “Counting” the number (♯) of possibilities to select element(s) from a group of element(s)
- Necessary step in learning how to compute probability of random events . . .

Do you know it all?

Book (pp. 51-52): Exercises 2.29, 2.31, 2.33, 2.35, 2.37, 2.39, 2.41, 2.45, 2.47
About this topic . . .

- “Warming up” . . .

- Literature: Section 2.3 (although we approach it slightly differently)

- “Counting” the number (♯) of possibilities to select element(s) from a group of element(s)

- Necessary step in learning how to compute probability of random events . . .
About this topic . . .

- “Warming up” . . .
- Literature: Section 2.3 (although we approach it slightly differently)
- “Counting” the number (\(\#\)) of possibilities to select element(s) from a group of element(s)
- Necessary step in learning how to compute probability of random events . . .
About this topic . . .

- “Warming up” . . .
- Literature: Section 2.3 (although we approach it slightly differently)
- “Counting” the number (♯) of possibilities to select element(s) from a group of element(s)
- Necessary step in learning how to compute probability of random events . . .
About this topic . . .

- “Warming up” . . .
- Literature: Section 2.3 (although we approach it slightly differently)
- “Counting” the number ($\#$) of possibilities to select element(s) from a group of element(s)
- Necessary step in learning how to compute probability of random events . . .

Do you know it all?

Book (pp. 51-52): Exercises 2.29, 2.31, 2.33, 2.35, 2.37, 2.39, 2.41, 2.45, 2.47
First Example

Order does not matter
In how many ways can we select
- 1 piece of fruit?
- 1 apple?
- 2 pears?
First Example

Order does not matter

In how many ways can we select

- 1 piece of fruit?
- 1 apple?
- 2 pears?
First Example

Order does not matter
In how many ways can we select

- 1 piece of fruit?
- 1 apple?
- 2 pears?
First Example

Order does not matter
In how many ways can we select
- 1 piece of fruit?
- 1 apple?
- 2 pears?

Second Example

The same questions, but now order matters
First Example ("\(A_1 P_1 A_2 P_2 A_3 A_4 P_3 A_5 P_4\")

How many ways to select

- 1 piece of fruit:
 - 1 apple:
 - 2 pears:
First Example ("A₁ P₁ A₂ P₂ A₃ A₄ P₃ A₅ P₄")

How many ways to select

- 1 piece of fruit:
 - 1 apple:
 - 2 pears:
First Example ("A₁ P₁ A₂ P₂ A₃ A₄ P₃ A₅ P₄")

How many ways to select

- 1 piece of fruit: 9 ways
 - 1 apple:
 - 2 pears:
First Example ("A₁ P₁ A₂ P₂ A₃ A₄ P₃ A₅ P₄")

How many ways to select

- 1 piece of fruit: 9 ways
- 1 apple:
 - 2 pears:
First Example ("A₁ P₁ A₂ P₂ A₃ A₄ P₃ A₅ P₄")

How many ways to select

- 1 piece of fruit: 9 ways
- 1 apple: 5 ways
- 2 pears:
First Example ("$A_1 P_1 A_2 P_2 A_3 A_4 P_3 A_5 P_4$")

How many ways to select

- 1 piece of fruit: 9 ways
- 1 apple: 5 ways
- 2 pears:
First Example ("A₁ P₁ A₂ P₂ A₃ A₄ P₃ A₅ P₄")

How many ways to select
- 1 piece of fruit: 9 ways
- 1 apple: 5 ways
- 2 pears: $\frac{4 \cdot 3}{2} = 6$ ways

\{P₁ P₂\}, \{P₁ P₃\}, \{P₁ P₄\}, \{P₂ P₃\}, \{P₂ P₄\}, \{P₃ P₄\}
First Example ("A₁ P₁ A₂ P₂ A₃ A₄ P₃ A₅ P₄")

How many ways to select
- 1 piece of fruit: 9 ways
- 1 apple: 5 ways
- 2 pears: $\frac{4 \times 3}{2} = 6$ ways

$\{P₁ P₂\}, \{P₁ P₃\}, \{P₁ P₄\}, \{P₂ P₃\}, \{P₂ P₄\}, \{P₃ P₄\}$

Order does not matter (unordered selection, combination) ⇒ we select groups rather than individual positions of fruit
Second Example ("A₁ P₁ A₂ P₂ A₃ A₄ P₃ A₅ P₄")

How many ways to select

- 1 piece of fruit:
 - 1 apple:
 - 2 pears:
Second Example ("A_1 P_1 A_2 P_2 A_3 A_4 P_3 A_5 P_4")

How many ways to select

- 1 piece of fruit:
 - 1 apple:
 - 2 pears:
Second Example ("\(A_1 P_1 A_2 P_2 A_3 A_4 P_3 A_5 P_4\)"")

How many ways to select
- 1 piece of fruit: 9 ways
 - 1 apple:
 - 2 pears:
Second Example ("A₁ P₁ A₂ P₂ A₃ A₄ P₃ A₅ P₄")

How many ways to select

- 1 piece of fruit: 9 ways
- 1 apple:
 - 2 pears:
Second Example ("A_1 P_1 A_2 P_2 A_3 A_4 P_3 A_5 P_4")

How many ways to select

- 1 piece of fruit: 9 ways
- 1 apple: 5 ways
- 2 pears:
Second Example ("$A_1 \quad P_1 \quad A_2 \quad P_2 \quad A_3 \quad A_4 \quad P_3 \quad A_5 \quad P_4$")

How many ways to select

- 1 piece of fruit: 9 ways
- 1 apple: 5 ways
- 2 pears:
Second Example ("A₁ P₁ A₂ P₂ A₃ A₄ P₃ A₅ P₄")

How many ways to select
- 1 piece of fruit: 9 ways
- 1 apple: 5 ways
- 2 pears: 4 ∙ 3 = 12 ways

 \((P₁ P₂), (P₁ P₃), (P₁ P₄), (P₂ P₃), (P₂ P₄),
 (P₃ P₄)\) and the reversed pairs
Second Example ("A_1 P_1 A_2 P_2 A_3 A_4 P_3 A_5 P_4")

How many ways to select

- 1 piece of fruit: 9 ways
- 1 apple: 5 ways
- 2 pears: \(4 \cdot 3 = 12\) ways

\((P_1 P_2), (P_1 P_3), (P_1 P_4), (P_2 P_3), (P_2 P_4), (P_3 P_4)\) and the reversed pairs

Order does matter (ordered selection, variation) ⇒ we select individual positions of fruit rather than the groups
Same examples ("A_1 P_1 A_2 P_2 A_3 A_4 P_3 A_5 P_4")

How do you select 3 apples if order matters and if order does not matter?

- Order matters:
- Order does not matter:

Ordered vs. unordered selection

Suppose we select \{A_1 A_2 A_3\}

- Unordered selection (combination):
- Ordered selection (variation):

This holds for any 3 selected apples ⇒ \# ordered solutions = 6 · \# unordered solutions

6 is \# orderings of a group of size 3
Same examples ("A₁ P₁ A₂ P₂ A₃ A₄ P₃ A₅ P₄")

How do you select 3 apples if order matters and if order does not matter?

- Order matters:
- Order does not matter:

Ordered vs. unordered selection

Suppose we select \{A₁ A₂ A₃\}

- Unordered selection (combination):
- Ordered selection (variation):
Same examples ("A₁ P₁ A₂ P₂ A₃ A₄ P₃ A₅ P₄")

How do you select 3 apples if order matters and if order does not matter?

- Order matters: $5 \cdot 4 \cdot 3 = 60$ ways
- Order does not matter:

Ordered vs. unordered selection

Suppose we select \{A₁ A₂ A₃\}

- Unordered selection (combination):
- Ordered selection (variation):
Same examples ("A₁ P₁ A₂ P₂ A₃ A₄ P₃ A₅ P₄")

How do you select 3 apples if order matters and if order does not matter?

- Order matters: $5 \cdot 4 \cdot 3 = 60$ ways
- Order does not matter: $\binom{5}{3} = 10$ ways
Same examples ("A₁ P₁ A₂ P₂ A₃ A₄ P₃ A₅ P₄")

How do you select 3 apples if order matters and if order does not matter?

- Order matters: 5 · 4 · 3 = 60 ways
- Order does not matter: 10 ways

Ordered vs. unordered selection

Suppose we select \{A₁ A₂ A₃\}

- Unordered selection (combination):
- Ordered selection (variation):
Same examples ("A₁ P₁ A₂ P₂ A₃ A₄ P₃ A₅ P₄")

How do you select 3 apples if order matters and if order does not matter?
- Order matters: $5 \cdot 4 \cdot 3 = 60$ ways
- Order does not matter: 10 ways

Ordered vs. unordered selection

Suppose we select \{A₁ A₂ A₃\}
- Unordered selection (combination):
- Ordered selection (variation):
Motivation

Preliminaries: Combinatorics

Same examples ("A₁ P₁ A₂ P₂ A₃ A₄ P₃ A₅ P₄")

How do you select 3 apples if order matters and if order does not matter?

- Order matters: \(5 \cdot 4 \cdot 3 = 60\) ways
- Order does not matter: \(10\) ways

Ordered vs. unordered selection

Suppose we select \(\{A₁ A₂ A₃\}\)

- Unordered selection (combination):
- Ordered selection (variation):
Same examples ("A_1 \; P_1 \; A_2 \; P_2 \; A_3 \; A_4 \; P_3 \; A_5 \; P_4")

How do you select 3 apples if order matters and if order does not matter?

- Order matters: \(5 \cdot 4 \cdot 3 = 60\) ways
- Order does not matter: \(10\) ways

Ordered vs. unordered selection

Suppose we select \{A_1 \; A_2 \; A_3\}

- Unordered selection (combination): \(1\) way
- Ordered selection (variation):
Same examples ("A_1 P_1 A_2 P_2 A_3 A_4 P_3 A_5 P_4")

How do you select 3 apples if order matters and if order does not matter?

- Order matters: \(5 \cdot 4 \cdot 3 = 60\) ways
- Order does not matter: \(10\) ways

Ordered vs. unordered selection

Suppose we select \(\{A_1 A_2 A_3\}\)

- Unordered selection (combination): \(1\) way
- Ordered selection (variation):
Same examples ("$A_1 \ P_1 \ A_2 \ P_2 \ A_3 \ A_4 \ P_3 \ A_5 \ P_4$")

How do you select 3 apples if order matters and if order does not matter?

- **Order matters:** $5 \cdot 4 \cdot 3 = 60$ ways
- **Order does not matter:** 10 ways

Ordered vs. unordered selection

Suppose we select $\{A_1 \ A_2 \ A_3\}$

- **Unordered selection (combination):** 1 way
- **Ordered selection (variation):** $3 \cdot 2 \cdot 1 = 6$ ways: $(A_1 \ A_2 \ A_3), (A_1 \ A_3 \ A_2), (A_2 \ A_1 \ A_3), (A_2 \ A_3 \ A_1), (A_3 \ A_1 \ A_2), (A_3 \ A_2 \ A_1)$
Same examples ("A₁ P₁ A₂ P₂ A₃ A₄ P₃ A₅ P₄")

How do you select 3 apples if order matters and if order does not matter?

- Order matters: \(5 \cdot 4 \cdot 3 = 60\) ways
- Order does not matter: 10 ways

Ordered vs. unordered selection

Suppose we select \(\{A₁ A₂ A₃\}\)

- Unordered selection (combination): 1 way
- Ordered selection (variation): \(3 \cdot 2 \cdot 1 = 6\) ways: \((A₁ A₂ A₃), (A₁ A₃ A₂), (A₂ A₁ A₃), (A₂ A₃ A₁), (A₃ A₁ A₂), (A₃ A₂ A₁)\)

This holds for any 3 selected apples

⇒ \#\ ordered solutions = 6 \cdot \#\ unordered solutions
Motivation

Practicalities

Preliminaries: Combinatorics

Same examples ("A_1 P_1 A_2 P_2 A_3 A_4 P_3 A_5 P_4")

How do you select 3 apples if order matters and if order does not matter?

- Order matters: \(5 \cdot 4 \cdot 3 = 60\) ways
- Order does not matter: 10 ways

Ordered vs. unordered selection

Suppose we select \(\{A_1 A_2 A_3\}\)

- Unordered selection (combination): 1 way
- Ordered selection (variation): \(3 \cdot 2 \cdot 1 = 6\) ways: \((A_1 A_2 A_3), (A_1 A_3 A_2), (A_2 A_1 A_3), (A_2 A_3 A_1), (A_3 A_1 A_2), (A_3 A_2 A_1)\)

This holds for any 3 selected apples

\(\Rightarrow\) \# ordered solutions = \(6 \cdot \#\) unordered solutions

6 is \# orderings of a group of size 3
What is a permutation?

Permutation is an ordering of all elements of a group (book slightly different, Def. 2.7)

Permutations of groups of different sizes

- size 1: 1 permutation
- size 2: \(2 \cdot 1 = 2\) permutations
- size 3: \(3 \cdot 2 \cdot 1 = 6\) permutations
- size 4: \(4 \cdot 3 \cdot 2 \cdot 1 = 24\) permutations
- ...
- size \(n\): \(n \cdot (n-1) \cdot \ldots \cdot 3 \cdot 2 \cdot 1 = n!\) (\(n\)-factorial)
What is a permutation?

Permutation is an ordering of all elements of a group (book slightly different, Def. 2.7)

permutations of groups of different sizes

- size 1: 1 permutation
- size 2: \(2 \cdot 1 = 2\) permutations
- size 3: \(3 \cdot 2 \cdot 1 = 6\) permutations
- size 4: \(4 \cdot 3 \cdot 2 \cdot 1 = 24\) permutations
 :
- size \(n\): \(n \cdot (n - 1) \cdot \ldots \cdot 3 \cdot 2 \cdot 1 = n!\) \((n\)-factorial)
Back to example ("A_1 \ P_1 \ A_2 \ P_2 \ A_3 \ A_4 \ P_3 \ A_5 \ P_4")

How many ways to pick 4 pieces of fruit?

- Ordered – variations:

- Unordered – combinations:

- Can we write these numbers in terms of permutations?
Back to example ("A₁ P₁ A₂ P₂ A₃ A₄ P₃ A₅ P₄")

How many ways to pick 4 pieces of fruit?
- Ordered – variations:
 - Unordered – combinations:
- Can we write these numbers in terms of permutations?
Back to example ("A₁ P₁ A₂ P₂ A₃ A₄ P₃ A₅ P₄")

How many ways to pick 4 pieces of fruit?

- **Ordered – variations:** \(9 \cdot 8 \cdot 7 \cdot 6 = 3024\)
 - 9 for the first piece
 - 8 for the second piece
 - 7 for the third piece
 - 6 for the fourth piece

- **Unordered – combinations:**

- Can we write these numbers in terms of permutations?
Back to example ("A_1 P_1 A_2 P_2 A_3 A_4 P_3 A_5 P_4")

How many ways to pick 4 pieces of fruit?

- Ordered – variations: \(9 \cdot 8 \cdot 7 \cdot 6 = 3024\)
 - 9 for the first piece
 - 8 for the second piece
 - 7 for the third piece
 - 6 for the fourth piece

- Unordered – combinations:
 - Can we write these numbers in terms of permutations?
Back to example ("A_1 P_1 A_2 P_2 A_3 A_4 P_3 A_5 P_4")

How many ways to pick 4 pieces of fruit?

- **Ordered** – variations: \(9 \cdot 8 \cdot 7 \cdot 6 = 3024\)
 - 9 for the first piece
 - 8 for the second piece
 - 7 for the third piece
 - 6 for the fourth piece

- **Unordered** – combinations: \(\frac{3024}{4!} = \frac{3024}{24} = 126\)
 - Can we write these numbers in terms of permutations?
Back to example ("A₁ P₁ A₂ P₂ A₃ A₄ P₃ A₅ P₄")

How many ways to pick 4 pieces of fruit?

- Ordered – variations: \(9 \cdot 8 \cdot 7 \cdot 6 = 3024\)
 - 9 for the first piece
 - 8 for the second piece
 - 7 for the third piece
 - 6 for the fourth piece

- Unordered – combinations: \(\frac{3024}{4!} = \frac{3024}{24} = 126\)

Can we write these numbers in terms of permutations?
Back to example ("A_1 P_1 A_2 P_2 A_3 A_4 P_3 A_5 P_4")

How many ways to pick 4 pieces of fruit?

- Ordered – variations: \(9 \cdot 8 \cdot 7 \cdot 6 = 3024 \)
 - 9 for the first piece
 - 8 for the second piece
 - 7 for the third piece
 - 6 for the fourth piece

- Unordered – combinations: \(\frac{3024}{4!} = \frac{3024}{24} = 126 \)

Can we write these numbers in terms of permutations?

- Ordered - variations: \(9 \cdot 8 \cdot 7 \cdot 6 = \frac{9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{5 \cdot 4 \cdot 3 \cdot 2 \cdot 1} = \frac{9!}{5!} \)

- Unordered - combinations: \(\frac{9!}{5!4!} = \binom{9}{5} = \binom{9}{4} \)
 ("combination/variation of 9 (elements) choose 5")
Variations & combinations

Variation

- Take a set S of n different elements. Choose k elements in a specific order. Each such choice is called a *variation of n elements choose k*

- # variations: $\frac{n!}{(n-k)!}$

(book: “permutation” Thm 2.4)

Combination

- Take a set S of n different elements. Choose set of k elements, in an unordered manner. Each such choice is called a *combination of n elements choose k*

- # combinations: $\binom{n}{k} = \frac{n!}{k!(n-k)!} = \frac{n!}{(n-k)!k!} = \binom{n}{n-k}$
Variation

- Take a set S of n different elements. Choose k elements in a specific order. Each such choice is called a variation of n elements choose k
- # variations: $\frac{n!}{(n-k)!}$

(book: “permutation” Thm 2.4)

Combination

- Take a set S of n different elements. Choose set of k elements, in an unordered manner. Each such choice is called a combination of n elements choose k
- # combinations: $\binom{n}{k} = \frac{n!}{k!(n-k)!} = \frac{n!}{(n-k)!k!} = \binom{n}{n-k}$
Exercises

1. How many ways are there to pick 2 letters out of 3 A’s and 4 B’s? (both ordered and unordered)
2. . . pick 2 A’s (both ordered and unordered)?
3. . . pick 2 B’s (both ordered and unordered)?
4. . . pick 2 A’s and 2 B’s (both ordered and unordered)?
5. How many ways to put 2 persons on 5 available seats?
6. How many ways to pick 2 chairs out of 5?
7. How many ways to throw a die and pick a card out of a deck (52 cards?) (Thm. 2.1)
8. How many ways to throw an odd number and pick a spade (♠) or to throw a 2 and pick a 3?
9. How many ways to throw an odd number and pick a spade (♠) or to throw a 3 and pick a 3?
10. How many ways are there to pick 2 A’s and 2 B’s out of A A’s and 4 B’s, when we distinguish between B’s, but not between A’s (“semi-ordered”)?
Homework - recommended exercises

Check yourself

- Book (pp. 51-52): Exercises 2.29, 2.31, 2.33, 2.35, 2.37, 2.39, 2.41, 2.45, 2.47

Notation

- $A, B \ldots \Rightarrow$ unordered
- $A_1, A_1, B_1, \ldots \Rightarrow$ ordered
Bring solutions to the lecture on April 16

1. How many ways to order letters (a) ABCDEF, (b) AABCDE, (c) AABBBC, (d) MAASTRICHT, (e) MISSISSIPPI? (Thms 2.6 and 2.7)

2. How many ways to divide 7 apples among 4 kids (both ordered and unordered)?

3. Book (pp. 51-52): Exercises 2.32, 2.42

4. Book (pp. 42-43): 2.16, 2.58