Lecture 11: Some Important Discrete Probability Distributions (Part 2)

Kateřina Staňková

Statistics (MAT1003)

May 7, 2012

(日) (日) (日) (日) (日) (日) (日)

Outline

- Binomial Distribution
- Multinomial Distribution
- Hypergeometric Distribution
- Exercises 5.1, 5.3, 5.7, 5.9, 5.11. 5.13, 5.17, 5. 23 (pp. 150–152)
- Hypergeometric Distribution
- 3 Geometric Distribution
 - Negative Binomial Distribution
- 5 The Poisson Process & Distribution
 - What is Poisson Process?
 - Poisson Distribution

book: Sections 5.4, 5.5

And now ...

Last time

- Binomial Distribution
- Multinomial Distribution
- Hypergeometric Distribution
- Exercises 5.1, 5.3, 5.7, 5.9, 5.11. 5.13, 5.17, 5. 23 (pp. 150–152)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

- 2 Hypergeometric Distribution
- 3 Geometric Distribution
- 4 Negative Binomial Distribution
- 5 The Poisson Process & Distribution
 - What is Poisson Process?
 - Poisson Distribution

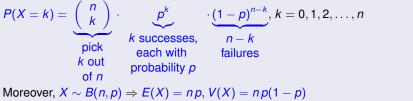
▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Binomial Distribution

Binomial Distribution

Binomial distribution

If we do *n* independent trials, where each time the success probability is $p \in [0, 1]$, and we define *X* to be the number of successes, then $X \sim B(n, p)$, and hence



◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Multinomial Distribution

Multinomial distribution

If we have more than 2 possible outcomes, we call the distribution multinomial. Notation $X \sim M(n; p_1, p_2, \dots, p_m)$ Computation: $P(x_1 = k_1, x_2 = k_2, \dots, x_m = k_m)$

$$=\frac{m!}{k_1!\cdot k_2!\ldots\cdot k_m!}\cdot p_1^{k_1}\cdot p_2^{k_2}\cdot\ldots\cdot p_m^{k_m}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

with $\sum_{i=1}^{m} p_i = 1$, $\sum_{j=1}^{m} k_j = n$

,

Hypergeometric Distribution

Example 2(d)

A bag contains 2 red, 3 blue, and 5 black marbles. What if we take the marbles without replacement? Let's pick 4

,

Hypergeometric Distribution

Example 2(d)

A bag contains 2 red, 3 blue, and 5 black marbles. What if we take the marbles without replacement? Let's pick 4 $X : \ddagger$ blues, $Y : \ddagger$ reds

Hypergeometric Distribution

Example 2(d)

A bag contains 2 red, 3 blue, and 5 black marbles. What if we take the marbles without replacement? Let's pick 4 X : # blues, Y : # reds

$$P(X = 2) =$$
, $P(Y = 1) =$

$$P(X+Y=3) =$$

Hypergeometric Distribution

Example 2(d)

A bag contains 2 red, 3 blue, and 5 black marbles. What if we take the marbles without replacement? Let's pick 4 X : # blues, Y : # reds

$$P(X=2) = \frac{\begin{pmatrix} 3\\2 \end{pmatrix} \begin{pmatrix} 7\\2 \end{pmatrix}}{\begin{pmatrix} 10\\4 \end{pmatrix}} = , P(Y=1) =$$

P(X + Y = 3) =

Hypergeometric Distribution

Example 2(d)

A bag contains 2 red, 3 blue, and 5 black marbles. What if we take the marbles without replacement? Let's pick 4 X : # blues, Y : # reds

$$P(X=2) = \frac{\begin{pmatrix} 3\\2 \end{pmatrix} \begin{pmatrix} 7\\2 \end{pmatrix}}{\begin{pmatrix} 10\\4 \end{pmatrix}} = \frac{3}{10}, P(Y=1) =$$

P(X + Y = 3) =

Hypergeometric Distribution

Example 2(d)

A bag contains 2 red, 3 blue, and 5 black marbles. What if we take the marbles without replacement? Let's pick 4 X : # blues, Y : # reds

$$P(X=2) = \frac{\begin{pmatrix} 3\\2 \end{pmatrix} \begin{pmatrix} 7\\2 \end{pmatrix}}{\begin{pmatrix} 10\\4 \end{pmatrix}} = \frac{3}{10}, P(Y=1) = \frac{\begin{pmatrix} 2\\1 \end{pmatrix} \begin{pmatrix} 8\\3 \end{pmatrix}}{\begin{pmatrix} 10\\4 \end{pmatrix}} =$$

P(X + Y = 3) =

Hypergeometric Distribution

Example 2(d)

A bag contains 2 red, 3 blue, and 5 black marbles. What if we take the marbles without replacement? Let's pick 4 X : # blues, Y : # reds

$$P(X=2) = \frac{\begin{pmatrix} 3\\2 \end{pmatrix} \begin{pmatrix} 7\\2 \end{pmatrix}}{\begin{pmatrix} 10\\4 \end{pmatrix}} = \frac{3}{10}, P(Y=1) = \frac{\begin{pmatrix} 2\\1 \end{pmatrix} \begin{pmatrix} 8\\3 \end{pmatrix}}{\begin{pmatrix} 10\\4 \end{pmatrix}} = \frac{8}{15}$$

P(X + Y = 3) =

Hypergeometric Distribution

Example 2(d)

A bag contains 2 red, 3 blue, and 5 black marbles. What if we take the marbles without replacement? Let's pick 4 X : # blues, Y : # reds

$$P(X=2) = \frac{\begin{pmatrix} 3\\2 \end{pmatrix} \begin{pmatrix} 7\\2 \end{pmatrix}}{\begin{pmatrix} 10\\4 \end{pmatrix}} = \frac{3}{10}, P(Y=1) = \frac{\begin{pmatrix} 2\\1 \end{pmatrix} \begin{pmatrix} 8\\3 \end{pmatrix}}{\begin{pmatrix} 10\\4 \end{pmatrix}} = \frac{8}{15}$$
$$P(X+Y=3) = \frac{\begin{pmatrix} 5\\3 \end{pmatrix} \begin{pmatrix} 5\\1 \end{pmatrix}}{\begin{pmatrix} 10\\4 \end{pmatrix}} =$$

Hypergeometric Distribution

Example 2(d)

A bag contains 2 red, 3 blue, and 5 black marbles. What if we take the marbles without replacement? Let's pick 4 X : # blues, Y : # reds

$$P(X=2) = \frac{\begin{pmatrix} 3\\2 \end{pmatrix} \begin{pmatrix} 7\\2 \end{pmatrix}}{\begin{pmatrix} 10\\4 \end{pmatrix}} = \frac{3}{10}, P(Y=1) = \frac{\begin{pmatrix} 2\\1 \end{pmatrix} \begin{pmatrix} 8\\3 \end{pmatrix}}{\begin{pmatrix} 10\\4 \end{pmatrix}} = \frac{8}{15}$$
$$P(X+Y=3) = \frac{\begin{pmatrix} 5\\3 \end{pmatrix} \begin{pmatrix} 5\\1 \end{pmatrix}}{\begin{pmatrix} 10\\4 \end{pmatrix}} = 5/21$$

Hypergeometric Distribution

Example 2(d)

A bag contains 2 red, 3 blue, and 5 black marbles. What if we take the marbles without replacement? Let's pick 4 X : # blues, Y : # reds

$$P(X = 2) = \frac{\begin{pmatrix} 3 \\ 2 \end{pmatrix} \begin{pmatrix} 7 \\ 2 \end{pmatrix}}{\begin{pmatrix} 10 \\ 4 \end{pmatrix}} = \frac{3}{10}, P(Y = 1) = \frac{\begin{pmatrix} 2 \\ 1 \end{pmatrix} \begin{pmatrix} 8 \\ 3 \end{pmatrix}}{\begin{pmatrix} 10 \\ 4 \end{pmatrix}} = \frac{8}{15}$$
$$P(X + Y = 3) = \frac{\begin{pmatrix} 5 \\ 3 \end{pmatrix} \begin{pmatrix} 5 \\ 1 \end{pmatrix}}{\begin{pmatrix} 10 \\ 4 \end{pmatrix}} = 5/21$$
$$P(X = 2, Y = 1) = \frac{\begin{pmatrix} 3 \\ 2 \end{pmatrix} \begin{pmatrix} 2 \\ 1 \end{pmatrix} \begin{pmatrix} 2 \\ 1 \end{pmatrix} \begin{pmatrix} 5 \\ 1 \end{pmatrix}}{\begin{pmatrix} 10 \\ 4 \end{pmatrix}} =$$

Hypergeometric Distribution

Example 2(d)

A bag contains 2 red, 3 blue, and 5 black marbles. What if we take the marbles without replacement? Let's pick 4 X : # blues, Y : # reds

$$P(X = 2) = \frac{\begin{pmatrix} 3 \\ 2 \end{pmatrix} \begin{pmatrix} 7 \\ 2 \end{pmatrix}}{\begin{pmatrix} 10 \\ 4 \end{pmatrix}} = \frac{3}{10}, P(Y = 1) = \frac{\begin{pmatrix} 2 \\ 1 \end{pmatrix} \begin{pmatrix} 8 \\ 3 \end{pmatrix}}{\begin{pmatrix} 10 \\ 4 \end{pmatrix}} = \frac{8}{15}$$
$$P(X + Y = 3) = \frac{\begin{pmatrix} 5 \\ 3 \end{pmatrix} \begin{pmatrix} 5 \\ 1 \end{pmatrix}}{\begin{pmatrix} 10 \\ 4 \end{pmatrix}} = 5/21$$
$$P(X = 2, Y = 1) = \frac{\begin{pmatrix} 3 \\ 2 \end{pmatrix} \begin{pmatrix} 2 \\ 1 \end{pmatrix} \begin{pmatrix} 2 \\ 1 \end{pmatrix} \begin{pmatrix} 5 \\ 1 \end{pmatrix}}{\begin{pmatrix} 10 \\ 4 \end{pmatrix}} = 1/7$$

Hypergeometric Distribution

P

Example 2(d)

A bag contains 2 red, 3 blue, and 5 black marbles. What if we take the marbles without replacement? Let's pick 4 X : # blues, Y : # reds

$$P(X = 2) = \frac{\begin{pmatrix} 3 \\ 2 \end{pmatrix} \begin{pmatrix} 7 \\ 2 \end{pmatrix}}{\begin{pmatrix} 10 \\ 4 \end{pmatrix}} = \frac{3}{10}, P(Y = 1) = \frac{\begin{pmatrix} 2 \\ 1 \end{pmatrix} \begin{pmatrix} 8 \\ 3 \end{pmatrix}}{\begin{pmatrix} 10 \\ 4 \end{pmatrix}} = \frac{8}{15}$$
$$P(X + Y = 3) = \frac{\begin{pmatrix} 5 \\ 3 \end{pmatrix} \begin{pmatrix} 5 \\ 1 \end{pmatrix}}{\begin{pmatrix} 10 \\ 4 \end{pmatrix}} = 5/21$$
$$P(X = 2, Y = 1) = \frac{\begin{pmatrix} 3 \\ 2 \end{pmatrix} \begin{pmatrix} 2 \\ 1 \end{pmatrix} \begin{pmatrix} 5 \\ 1 \end{pmatrix}}{\begin{pmatrix} 10 \\ 4 \end{pmatrix}} = 1/7$$

Corresponding distribution: Hypergeometric (HW: derive general formula + try odd exercises from Sections 5.3 & 5.4)

And now ...

Last time

- Binomial Distribution
- Multinomial Distribution
- Hypergeometric Distribution
- Exercises 5.1, 5.3, 5.7, 5.9, 5.11. 5.13, 5.17, 5. 23 (pp. 150–152)

2 Hypergeometric Distribution

- 3 Geometric Distribution
- 4 Negative Binomial Distribution
- 5 The Poisson Process & Distribution
 - What is Poisson Process?
 - Poisson Distribution

Definition

The probability distribution of the hypergeometric random variable X (\sharp of successes), i.e., the probability of the success if we pick randomly *n* out of *N* elements of which *s* are labeled as success and *N* – *s* are labeled as failure, is

Definition

The probability distribution of the hypergeometric random variable X (\sharp of successes), i.e., the probability of the success if we pick randomly *n* out of *N* elements of which *s* are labeled as success and *N* – *s* are labeled as failure, is

$$P(X = k) = \frac{\binom{s}{k} \cdot \binom{N-s}{n-k}}{\binom{N}{n}}$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

where $\max\{0, n - (N - s)\} \le k \le \min\{n, s\}$

Definition

The probability distribution of the hypergeometric random variable X (\sharp of successes), i.e., the probability of the success if we pick randomly *n* out of *N* elements of which *s* are labeled as success and *N* – *s* are labeled as failure, is

$$P(X = k) = \frac{\binom{s}{k} \cdot \binom{N-s}{n-k}}{\binom{N}{n}}$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

where max{0, n - (N - s)} $\leq k \leq \min\{n, s\}$ Also, $E(X) = \mu_X = \frac{nk}{N}$, $V(X) = \frac{N-n}{N-1} \cdot n \cdot \frac{k}{N} \cdot (1 - \frac{k}{N})$

And now ...

Last time

- Binomial Distribution
- Multinomial Distribution
- Hypergeometric Distribution
- Exercises 5.1, 5.3, 5.7, 5.9, 5.11. 5.13, 5.17, 5. 23 (pp. 150–152)

- 2 Hypergeometric Distribution
- 3 Geometric Distribution
- 4 Negative Binomial Distribution
- 5 The Poisson Process & Distribution
 - What is Poisson Process?
 - Poisson Distribution

Example 1 (b)

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Example 1 (b)

25 % of the families in a village have a subscription to a local newspaper

Example 1 (b)

25 % of the families in a village have a subscription to a local newspaper Define Z: \sharp families we have to ask such that the last family we ask is the first one that has a subscription

Example 1 (b)

25 % of the families in a village have a subscription to a local newspaper Define Z: \sharp families we have to ask such that the last family we ask is the first one that has a subscription

$$P(Z = 1) =$$

Example 1 (b)

25 % of the families in a village have a subscription to a local newspaper Define Z: \sharp families we have to ask such that the last family we ask is the first one that has a subscription

$$P(Z = 1) = 0.25$$

Example 1 (b)

25 % of the families in a village have a subscription to a local newspaper Define Z: \sharp families we have to ask such that the last family we ask is the first one that has a subscription

$$P(Z = 1) = 0.25$$

 $P(Z = 2) =$

Example 1 (b)

25 % of the families in a village have a subscription to a local newspaper Define Z: \sharp families we have to ask such that the last family we ask is the first one that has a subscription

$$P(Z = 1) = 0.25$$

 $P(Z = 2) = 0.75 \cdot 0.25$

Example 1 (b)

25 % of the families in a village have a subscription to a local newspaper Define Z: \sharp families we have to ask such that the last family we ask is the first one that has a subscription

$$P(Z = 1) = 0.25$$

 $P(Z = 2) = 0.75 \cdot 0.25$
 $P(Z = 3) =$

Example 1 (b)

25 % of the families in a village have a subscription to a local newspaper Define Z: \sharp families we have to ask such that the last family we ask is the first one that has a subscription

$$P(Z = 1) = 0.25$$

$$P(Z = 2) = 0.75 \cdot 0.25$$

$$P(Z = 3) = 0.75 \cdot 0.75 \cdot 0.25$$

Example 1 (b)

25 % of the families in a village have a subscription to a local newspaper Define Z: \sharp families we have to ask such that the last family we ask is the first one that has a subscription

$$P(Z = 1) = 0.25$$

$$P(Z = 2) = 0.75 \cdot 0.25$$

$$P(Z = 3) = 0.75 \cdot 0.75 \cdot 0.25$$

$$P(Z = k) =$$

Example 1 (b)

25 % of the families in a village have a subscription to a local newspaper Define Z: \sharp families we have to ask such that the last family we ask is the first one that has a subscription

$$P(Z = 1) = 0.25$$

$$P(Z = 2) = 0.75 \cdot 0.25$$

$$P(Z = 3) = 0.75 \cdot 0.75 \cdot 0.25$$

$$P(Z = k) = 0.75^{k-1} \cdot 0.25$$

Example 1 (b)

25 % of the families in a village have a subscription to a local newspaper Define Z: \sharp families we have to ask such that the last family we ask is the first one that has a subscription

$$P(Z = 1) = 0.25$$

$$P(Z = 2) = 0.75 \cdot 0.25$$

$$P(Z = 3) = 0.75 \cdot 0.75 \cdot 0.25$$

$$P(Z = k) = 0.75^{k-1} \cdot 0.25$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

If we change 0.25 into a $p \in [0, 1]$, then $P(Z = k) = (1 - p)^{k-1} \cdot p$

Example 1 (b)

25 % of the families in a village have a subscription to a local newspaper Define Z: \sharp families we have to ask such that the last family we ask is the first one that has a subscription

$$P(Z = 1) = 0.25$$

$$P(Z = 2) = 0.75 \cdot 0.25$$

$$P(Z = 3) = 0.75 \cdot 0.75 \cdot 0.25$$

$$P(Z = k) = 0.75^{k-1} \cdot 0.25$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

If we change 0.25 into a $p \in [0, 1]$, then $P(Z = k) = (1 - p)^{k-1} \cdot p \Rightarrow$ Geometric distribution G(p)

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

Geometric Distribution G(p)

Geometric Distribution G(p)

If $X \sim G(p)$, then $P(X = k) = (1 - p)^{k-1} \cdot p$

Geometric Distribution G(p)

If $X \sim G(p)$, then $P(X = k) = (1 - p)^{k-1} \cdot p$

Expectation & Variance of Geometric Distribution

Geometric Distribution G(p)

If $X \sim G(p)$, then $P(X = k) = (1 - p)^{k-1} \cdot p$

Expectation & Variance of Geometric Distribution

Let $X \sim G(p)$. Derive E(X):

E(X) =

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─の�?

Geometric Distribution G(p)

If $X \sim G(p)$, then $P(X = k) = (1 - p)^{k-1} \cdot p$

Expectation & Variance of Geometric Distribution

$$E(X) = \sum_{k=1}^{\infty} k(1-p)^{k-1}p$$

Geometric Distribution G(p)

If $X \sim G(p)$, then $P(X = k) = (1 - p)^{k-1} \cdot p$

Expectation & Variance of Geometric Distribution

$$E(X) = \sum_{k=1}^{\infty} k(1-p)^{k-1}p = p \sum_{k=1}^{\infty} (-\frac{d}{dp}(1-p)^k)$$

Geometric Distribution G(p)

If $X \sim G(p)$, then $P(X = k) = (1 - p)^{k-1} \cdot p$

Expectation & Variance of Geometric Distribution

Let $X \sim G(p)$. Derive E(X):

$$E(X) = \sum_{k=1}^{\infty} k(1-p)^{k-1}p = p \sum_{k=1}^{\infty} (-\frac{d}{dp}(1-p)^k)$$
$$= p \frac{d}{dp} (-\sum_{k=1}^{\infty} ((1-p)^k))$$

・ロト・日本・日本・日本・日本・日本

Geometric Distribution G(p)

If $X \sim G(p)$, then $P(X = k) = (1 - p)^{k-1} \cdot p$

Expectation & Variance of Geometric Distribution

Let $X \sim G(p)$. Derive E(X):

$$E(X) = \sum_{k=1}^{\infty} k(1-p)^{k-1}p = p \sum_{k=1}^{\infty} \left(-\frac{d}{dp}(1-p)^k\right)$$
$$= p \frac{d}{dp} \left(-\sum_{k=1}^{\infty} \left((1-p)^k\right)\right) = p \frac{d}{dp} \left(-\frac{1-p}{1-(1-p)}\right)$$

・ロト・日本・日本・日本・日本・日本

Geometric Distribution G(p)

If $X \sim G(p)$, then $P(X = k) = (1 - p)^{k-1} \cdot p$

Expectation & Variance of Geometric Distribution

Let $X \sim G(p)$. Derive E(X):

$$E(X) = \sum_{k=1}^{\infty} k(1-p)^{k-1}p = p \sum_{k=1}^{\infty} \left(-\frac{d}{dp}(1-p)^k\right)$$
$$= p \frac{d}{dp} \left(-\sum_{k=1}^{\infty} \left((1-p)^k\right)\right) = p \frac{d}{dp} \left(-\frac{1-p}{1-(1-p)}\right)$$
$$= p \frac{d}{dp} \left(\frac{p-1}{p}\right)$$

・ロト・日本・日本・日本・日本・日本

Geometric Distribution G(p)

If $X \sim G(p)$, then $P(X = k) = (1 - p)^{k-1} \cdot p$

Expectation & Variance of Geometric Distribution

$$E(X) = \sum_{k=1}^{\infty} k(1-p)^{k-1}p = p \sum_{k=1}^{\infty} \left(-\frac{d}{dp}(1-p)^k\right)$$
$$= p \frac{d}{dp} \left(-\sum_{k=1}^{\infty} \left((1-p)^k\right)\right) = p \frac{d}{dp} \left(-\frac{1-p}{1-(1-p)}\right)$$
$$= p \frac{d}{dp} \left(\frac{p-1}{p}\right) = p \frac{1}{p^2}$$

Geometric Distribution G(p)

If $X \sim G(p)$, then $P(X = k) = (1 - p)^{k-1} \cdot p$

Expectation & Variance of Geometric Distribution

$$E(X) = \sum_{k=1}^{\infty} k(1-p)^{k-1}p = p \sum_{k=1}^{\infty} \left(-\frac{d}{dp}(1-p)^k\right)$$
$$= p \frac{d}{dp} \left(-\sum_{k=1}^{\infty} \left((1-p)^k\right)\right) = p \frac{d}{dp} \left(-\frac{1-p}{1-(1-p)}\right)$$
$$= p \frac{d}{dp} \left(\frac{p-1}{p}\right) = p \frac{1}{p^2} = \frac{1}{p}$$

Geometric Distribution G(p)

If $X \sim G(p)$, then $P(X = k) = (1 - p)^{k-1} \cdot p$

Expectation & Variance of Geometric Distribution

$$E(X) = \sum_{k=1}^{\infty} k(1-p)^{k-1}p = p \sum_{k=1}^{\infty} \left(-\frac{d}{dp}(1-p)^k\right)$$
$$= p \frac{d}{dp} \left(-\sum_{k=1}^{\infty} \left((1-p)^k\right)\right) = p \frac{d}{dp} \left(-\frac{1-p}{1-(1-p)}\right)$$
$$= p \frac{d}{dp} \left(\frac{p-1}{p}\right) = p \frac{1}{p^2} = \frac{1}{p}$$
$$V(X) = E(X^2) - \mu_X^2$$

Geometric Distribution G(p)

If $X \sim G(p)$, then $P(X = k) = (1 - p)^{k-1} \cdot p$

Expectation & Variance of Geometric Distribution

Let $X \sim G(p)$. Derive E(X):

$$E(X) = \sum_{k=1}^{\infty} k(1-p)^{k-1}p = p \sum_{k=1}^{\infty} \left(-\frac{d}{dp}(1-p)^k\right)$$
$$= p \frac{d}{dp} \left(-\sum_{k=1}^{\infty} \left((1-p)^k\right)\right) = p \frac{d}{dp} \left(-\frac{1-p}{1-(1-p)}\right)$$
$$= p \frac{d}{dp} \left(\frac{p-1}{p}\right) = p \frac{1}{p^2} = \frac{1}{p}$$
$$V(X) = E(X^2) - \mu_X^2 = \frac{1-p}{p^2}$$

book: Theorem 5.3

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

Geometric distribution

Geometric distribution

If we have a Bernoulli process (a number of independent trials, each with success probability *p*) and *X* is the RV that is the trial giving the first success, then $X \sim G(p)$ and

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Geometric distribution

If we have a Bernoulli process (a number of independent trials, each with success probability *p*) and *X* is the RV that is the trial giving the first success, then $X \sim G(p)$ and

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• $P(X = k) = (1 - p)^{k-1} \cdot p$

•
$$E(X) = \frac{1}{\mu}$$

•
$$V(X) = \frac{1-p}{p^2}$$

Geometric distribution

If we have a Bernoulli process (a number of independent trials, each with success probability *p*) and *X* is the RV that is the trial giving the first success, then $X \sim G(p)$ and

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

•
$$P(X = k) = (1 - p)^{k-1} \cdot p$$

•
$$E(X) = \frac{1}{p}$$

•
$$V(X) = \frac{1-p}{p^2}$$

Exercise 5.55 (pp. 165)

And now ...

Last time

- Binomial Distribution
- Multinomial Distribution
- Hypergeometric Distribution
- Exercises 5.1, 5.3, 5.7, 5.9, 5.11. 5.13, 5.17, 5. 23 (pp. 150–152)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

- 2 Hypergeometric Distribution
- 3 Geometric Distribution
 - Negative Binomial Distribution
- 5 The Poisson Process & Distribution
 - What is Poisson Process?
 - Poisson Distribution

Idea

Let Y be the trial that gives the k^{th} success. Then, if we are interested in P(Y = y):

Idea

Let Y be the trial that gives the k^{th} success. Then, if we are interested in P(Y = y):

 In the first y – 1 trials we have exactly k – 1 successes. Each with probability p

Idea

Let Y be the trial that gives the k^{th} success. Then, if we are interested in P(Y = y):

 In the first y − 1 trials we have exactly k − 1 successes. Each with probability p ⇒ This must be therefore a binomial distribution with probability

$$\left(\begin{array}{c} y-1\\ k-1 \end{array}\right)p^{k-1}\left(1-p\right)^{y-k}$$

Idea

Let Y be the trial that gives the k^{th} success. Then, if we are interested in P(Y = y):

 In the first y − 1 trials we have exactly k − 1 successes. Each with probability p ⇒ This must be therefore a binomial distribution with probability

$$\left(\begin{array}{c} y-1\\ k-1 \end{array}\right)p^{k-1}\left(1-p\right)^{y-k}$$

(日) (日) (日) (日) (日) (日) (日)

The yth trial is a success: That happens with probability p

Idea

Let Y be the trial that gives the k^{th} success. Then, if we are interested in P(Y = y):

 In the first y − 1 trials we have exactly k − 1 successes. Each with probability p ⇒ This must be therefore a binomial distribution with probability

$$\left(\begin{array}{c} y-1\\ k-1 \end{array}\right)p^{k-1}\left(1-p\right)^{y-k}$$

The yth trial is a success: That happens with probability p

Therefore

$$P(Y = y) = \begin{pmatrix} y-1 \\ k-1 \end{pmatrix} p^{k-1} (1-p)^{y-k} \cdot p,$$

(日) (日) (日) (日) (日) (日) (日)

 $y = k, k + 1, \ldots,$

Negative Binomial Distribution

If we have a Bernoulli process (a number of independent trials, each with success probability *p*) and *Y* is the RV that is the trial giving the k^{th} success, then $Y \sim NB(k, p)$ and

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Negative Binomial Distribution

If we have a Bernoulli process (a number of independent trials, each with success probability *p*) and *Y* is the RV that is the trial giving the k^{th} success, then $Y \sim NB(k, p)$ and

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

•
$$P(Y = y) = \begin{pmatrix} y - 1 \\ k - 1 \end{pmatrix} p^{k-1} (1 - p)^{y-k} \cdot p$$

Negative Binomial Distribution

If we have a Bernoulli process (a number of independent trials, each with success probability *p*) and *Y* is the RV that is the trial giving the k^{th} success, then $Y \sim NB(k, p)$ and

•
$$P(Y = y) = \begin{pmatrix} y-1\\ k-1 \end{pmatrix} p^{k-1} (1-p)^{y-k} \cdot p$$

• $E(Y) = \frac{k}{p}$ (for each success we need, on average, 1/p trials)

・ロト・日本・日本・日本・日本

Negative Binomial Distribution

If we have a Bernoulli process (a number of independent trials, each with success probability *p*) and *Y* is the RV that is the trial giving the k^{th} success, then $Y \sim NB(k, p)$ and

•
$$P(Y = y) = \begin{pmatrix} y-1\\ k-1 \end{pmatrix} p^{k-1} (1-p)^{y-k} \cdot p$$

• $E(Y) = \frac{k}{p}$ (for each success we need, on average, 1/p trials)

(日) (日) (日) (日) (日) (日) (日)

•
$$V(Y) = k \cdot \frac{1-p}{p^2}$$
 (trials are independent)

Example 3(a)

If we have throw a die repeatedly, how many times does it take on average until 6 shows up?

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Example 3(a)

If we have throw a die repeatedly, how many times does it take on average until 6 shows up?

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

X : \sharp trials required,

Example 3(a)

If we have throw a die repeatedly, how many times does it take on average until 6 shows up?

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

X : \ddagger trials required, $X \sim G(\frac{1}{6})$

```
Last time Hypergeometric Distribution Geometric Distribution Negative Binomial Distribution The Poisson Process & D
```

Example 3(a)

```
If we have throw a die repeatedly, how many times does it take
on average until 6 shows up?
X : \ddagger trials required, X \sim G(\frac{1}{6})
E(X) = \frac{1}{\rho} = \frac{1}{\frac{1}{6}} = 6
```

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Example 3(a)

If we have throw a die repeatedly, how many times does it take on average until 6 shows up? $X : \sharp$ trials required, $X \sim G(\frac{1}{6})$ $E(X) = \frac{1}{p} = \frac{1}{\frac{1}{6}} = 6$

Example 3(b)

If we have throw a die repeatedly, how many times does it take on average until 6 shows up for the 15th time?

Example 3(a)

If we have throw a die repeatedly, how many times does it take on average until 6 shows up? $X : \sharp$ trials required, $X \sim G(\frac{1}{6})$ $E(X) = \frac{1}{\rho} = \frac{1}{\frac{1}{6}} = 6$

Example 3(b)

If we have throw a die repeatedly, how many times does it take on average until 6 shows up for the 15^{th} time? $Y : \ddagger$ trials required,

(日) (日) (日) (日) (日) (日) (日)

Example 3(a)

If we have throw a die repeatedly, how many times does it take on average until 6 shows up? $X : \sharp$ trials required, $X \sim G(\frac{1}{6})$ $E(X) = \frac{1}{\rho} = \frac{1}{\frac{1}{6}} = 6$

Example 3(b)

If we have throw a die repeatedly, how many times does it take on average until 6 shows up for the 15th time? $Y : \sharp$ trials required, $Y \sim NB(15, \frac{1}{6})$

・ロト・日本・日本・日本・日本

Example 3(a)

If we have throw a die repeatedly, how many times does it take on average until 6 shows up? $X : \sharp$ trials required, $X \sim G(\frac{1}{6})$ $E(X) = \frac{1}{\rho} = \frac{1}{\frac{1}{6}} = 6$

Example 3(b)

If we have throw a die repeatedly, how many times does it take on average until 6 shows up for the 15th time? $Y : \sharp$ trials required, $Y \sim NB(15, \frac{1}{6})$ $E(Y) = \frac{k}{p} = \frac{15}{\frac{1}{6}} = 90 = 15 \cdot E(X)$

And now ...

Last time

- Binomial Distribution
- Multinomial Distribution
- Hypergeometric Distribution
- Exercises 5.1, 5.3, 5.7, 5.9, 5.11. 5.13, 5.17, 5. 23 (pp. 150–152)
- 2 Hypergeometric Distribution
- 3 Geometric Distribution
 - Negative Binomial Distribution
- 5 The Poisson Process & Distribution
 - What is Poisson Process?
 - Poisson Distribution

What is Poisson Process?

Example

In a shop the number of customers per each hour is recorded. If we assume that

What is Poisson Process?

Example

In a shop the number of customers per each hour is recorded. If we assume that

during each hour the expected number of customers is the same

What is Poisson Process?

Example

In a shop the number of customers per each hour is recorded. If we assume that

- during each hour the expected number of customers is the same
- the number of customers entering during an hour does not depend on the number of customers entering during a different hour

What is Poisson Process?

Example

In a shop the number of customers per each hour is recorded. If we assume that

- during each hour the expected number of customers is the same
- the number of customers entering during an hour does not depend on the number of customers entering during a different hour
- the probability of a customer entering in a very short period (e.g. a second) is proportional to the length of the period

What is Poisson Process?

Example

In a shop the number of customers per each hour is recorded. If we assume that

- during each hour the expected number of customers is the same
- the number of customers entering during an hour does not depend on the number of customers entering during a different hour
- the probability of a customer entering in a very short period (e.g. a second) is proportional to the length of the period
- never 2 customers enter at the same time

What is Poisson Process?

Example

In a shop the number of customers per each hour is recorded. If we assume that

- during each hour the expected number of customers is the same
- the number of customers entering during an hour does not depend on the number of customers entering during a different hour
- the probability of a customer entering in a very short period (e.g. a second) is proportional to the length of the period
- never 2 customers enter at the same time

then the customer-arriving process is a Poisson Process

What is Poisson Process?

Example

In a shop the number of customers per each hour is recorded. If we assume that

- during each hour the expected number of customers is the same
- the number of customers entering during an hour does not depend on the number of customers entering during a different hour
- the probability of a customer entering in a very short period (e.g. a second) is proportional to the length of the period
- never 2 customers enter at the same time

then the customer-arriving process is a Poisson Process

Book: Section 5.5

What is Poisson Process?

Properties of Poisson Process

What is Poisson Process?

Properties of Poisson Process

 Poisson process has no memory: The number of outcomes occurring in one time interval or specified region of space is independent on the number that occur in any other disjoint time interval or region.

What is Poisson Process?

Properties of Poisson Process

- Poisson process has no memory: The number of outcomes occurring in one time interval or specified region of space is independent on the number that occur in any other disjoint time interval or region.
- The probability that a single outcome will occur during a very short time interval or in a small region is proportional to the length of the time interval or the size od the region and does not depend on the number of outcomes occurring outside this interval/region.

What is Poisson Process?

Properties of Poisson Process

- Poisson process has no memory: The number of outcomes occurring in one time interval or specified region of space is independent on the number that occur in any other disjoint time interval or region.
- The probability that a single outcome will occur during a very short time interval or in a small region is proportional to the length of the time interval or the size od the region and does not depend on the number of outcomes occurring outside this interval/region.
- The probability that more than one outcome will occur in such a short time interval or in such a small region is negligible.

What is Poisson Process?

Properties of Poisson Process

- Poisson process has no memory: The number of outcomes occurring in one time interval or specified region of space is independent on the number that occur in any other disjoint time interval or region.
- The probability that a single outcome will occur during a very short time interval or in a small region is proportional to the length of the time interval or the size od the region and does not depend on the number of outcomes occurring outside this interval/region.
- The probability that more than one outcome will occur in such a short time interval or in such a small region is negligible.

The number X of outcomes occurring during a Poisson experiment is called a Poisson random variable, and its probability distribution is called the Poisson distribution.

Poisson Distribution

Definitions

Poisson Distribution

Definitions

Suppose some process is a Poisson Process (such as customer-arrival process) with an average/expected value $\mu_X = \mu$ (\sharp arrivals) per time unit, e.g. hour

Let X denote # arrivals in one hour

Poisson Distribution

Definitions

- Let X denote # arrivals in one hour
- Then X ~ P(μ) (X has a Poisson distribution with parameter μ)

Poisson Distribution

Definitions

- Let X denote # arrivals in one hour
- Then X ~ P(μ) (X has a Poisson distribution with parameter μ)

•
$$Pr(X = k) = \frac{\mu^k}{k!} e^{-\mu}, k = 0, 1, 2, 3, \dots$$

Poisson Distribution

Definitions

- Let X denote # arrivals in one hour
- Then X ~ P(μ) (X has a Poisson distribution with parameter μ)

•
$$Pr(X = k) = \frac{\mu^k}{k!} e^{-\mu}, k = 0, 1, 2, 3, \dots$$

•
$$E(X) = \mu$$
, $V(X) = \mu$

Poisson Distribution

Definitions

Suppose some process is a Poisson Process (such as customer-arrival process) with an average/expected value $\mu_X = \mu$ (\sharp arrivals) per time unit, e.g. hour

- Let X denote # arrivals in one hour
- Then X ~ P(μ) (X has a Poisson distribution with parameter μ)
- $Pr(X = k) = \frac{\mu^k}{k!} e^{-\mu}, k = 0, 1, 2, 3, \dots$

•
$$E(X) = \mu$$
, $V(X) = \mu$

Book: See Table A2 (pp. 734–735) for $Pr(X \le k)$ for several μ and k

Poisson Distribution

Definitions

Suppose some process is a Poisson Process (such as customer-arrival process) with an average/expected value $\mu_X = \mu$ (\sharp arrivals) per time unit, e.g. hour

- Let X denote # arrivals in one hour
- Then X ~ P(μ) (X has a Poisson distribution with parameter μ)
- $Pr(X = k) = \frac{\mu^k}{k!} e^{-\mu}, k = 0, 1, 2, 3, \dots$

•
$$E(X) = \mu$$
, $V(X) = \mu$

Book: See Table A2 (pp. 734–735) for $Pr(X \le k)$ for several μ and k

Notice that $\sum_{k=0}^{\infty} \Pr(X = k) = \sum_{k=0}^{\infty} \frac{\mu^{k}}{k!} e^{-\mu} = e^{\mu} \cdot e^{-\mu} = 1$

Poisson Distribution

Definitions

Suppose some process is a Poisson Process (such as customer-arrival process) with an average/expected value $\mu_X = \mu$ (# arrivals) per time unit, e.g. hour

- Let X denote # arrivals in one hour
- Then X ~ P(μ) (X has a Poisson distribution with parameter μ)
- $Pr(X = k) = \frac{\mu^k}{k!} e^{-\mu}, k = 0, 1, 2, 3, \dots$

•
$$E(X) = \mu$$
, $V(X) = \mu$

Book: See Table A2 (pp. 734–735) for $Pr(X \le k)$ for several μ and kNotice that $\sum_{k=0}^{\infty} Pr(X = k) = \sum_{k=0}^{\infty} \frac{\mu^k}{k!} e^{-\mu} = e^{\mu} \cdot e^{-\mu} = 1$ (Exercise from Calculus: Use ∞ -degree of Taylor polynomial to show that $e^x = \sum_{k=0}^{\infty} \frac{x^k}{k!}$)

Poisson Distribution

If $X \sim \mathcal{P}(\mu)$, then $E(X) = \mu$

Poisson Distribution

If $X \sim \mathcal{P}(\mu)$, then $E(X) = \mu$

Suppose some process is a Poisson Process (such as customer-arrival process) with an average/expected value μ_X Then

E(X) =

Poisson Distribution

If $X \sim \mathcal{P}(\mu)$, then $E(X) = \mu$

$$E(X) = \sum_{k=0}^{\infty} k \cdot Pr(X = k)$$

Poisson Distribution

If $X \sim \mathcal{P}(\mu)$, then $E(X) = \mu$

$$E(X) = \sum_{k=0}^{\infty} k \cdot Pr(X = k)$$
$$= \sum_{k=0}^{\infty} k \frac{\mu^{k}}{k!} e^{-\mu}$$

Poisson Distribution

If $X \sim \mathcal{P}(\mu)$, then $E(X) = \mu$

$$E(X) = \sum_{k=0}^{\infty} k \cdot Pr(X = k)$$
$$= \sum_{k=0}^{\infty} k \frac{\mu^{k}}{k!} e^{-\mu} = \sum_{k=1}^{\infty} k \frac{\mu^{k}}{k!} e^{-\mu}$$

Poisson Distribution

If $X \sim \mathcal{P}(\mu)$, then $E(X) = \mu$

$$E(X) = \sum_{k=0}^{\infty} k \cdot Pr(X = k)$$
$$= \sum_{k=0}^{\infty} k \frac{\mu^k}{k!} e^{-\mu} = \sum_{k=1}^{\infty} k \frac{\mu^k}{k!} e^{-\mu}$$
$$= \sum_{k=1}^{\infty} \frac{\mu^k}{(k-1)!} e^{-\mu} =$$

Poisson Distribution

If $X \sim \mathcal{P}(\mu)$, then $E(X) = \mu$

$$E(X) = \sum_{k=0}^{\infty} k \cdot Pr(X = k)$$

= $\sum_{k=0}^{\infty} k \frac{\mu^{k}}{k!} e^{-\mu} = \sum_{k=1}^{\infty} k \frac{\mu^{k}}{k!} e^{-\mu}$
= $\sum_{k=1}^{\infty} \frac{\mu^{k}}{(k-1)!} e^{-\mu} = \mu \cdot e^{-\mu} \cdot \sum_{k=1}^{\infty} \frac{\mu^{k-1}}{(k-1)!}$

Poisson Distribution

If $X \sim \mathcal{P}(\mu)$, then $E(X) = \mu$

$$E(X) = \sum_{k=0}^{\infty} k \cdot Pr(X = k)$$

=
$$\sum_{k=0}^{\infty} k \frac{\mu^{k}}{k!} e^{-\mu} = \sum_{k=1}^{\infty} k \frac{\mu^{k}}{k!} e^{-\mu}$$

=
$$\sum_{k=1}^{\infty} \frac{\mu^{k}}{(k-1)!} e^{-\mu} = \mu \cdot e^{-\mu} \cdot \sum_{k=1}^{\infty} \frac{\mu^{k-1}}{(k-1)!}$$

$$\stackrel{j=k-1}{=} \mu \cdot e^{-\mu} \cdot \sum_{j=0}^{\infty} \frac{\mu^{j}}{j!}$$

Poisson Distribution

If $X \sim \mathcal{P}(\mu)$, then $E(X) = \mu$

$$E(X) = \sum_{k=0}^{\infty} k \cdot Pr(X = k)$$

= $\sum_{k=0}^{\infty} k \frac{\mu^k}{k!} e^{-\mu} = \sum_{k=1}^{\infty} k \frac{\mu^k}{k!} e^{-\mu}$
= $\sum_{k=1}^{\infty} \frac{\mu^k}{(k-1)!} e^{-\mu} = \mu \cdot e^{-\mu} \cdot \sum_{k=1}^{\infty} \frac{\mu^{k-1}}{(k-1)!}$
 $\stackrel{j=k-1}{=} \mu \cdot e^{-\mu} \cdot \sum_{j=0}^{\infty} \frac{\mu^j}{j!} = \mu \cdot e^{-\mu} \cdot e^{\mu} = \mu$

Poisson Distribution

Theorem

If $X \sim B(n, p)$ with *n* "very big", *p* "very small". Then $X \approx \mathcal{P}(np) = \mathcal{P}(\mu)$

Poisson Distribution

Theorem

If $X \sim B(n, p)$ with *n* "very big", *p* "very small". Then $X \approx \mathcal{P}(np) = \mathcal{P}(\mu)$ Proof:

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Poisson Distribution

Theorem

If $X \sim B(n, p)$ with *n* "very big", *p* "very small". Then $X \approx \mathcal{P}(np) = \mathcal{P}(\mu)$ Proof: Let $X_n \sim B(n, p)$ where $n \to \infty$ and $p_n = \frac{\mu}{n} \to 0$

Poisson Distribution

Theorem

If $X \sim B(n, p)$ with *n* "very big", *p* "very small". Then $X \approx \mathcal{P}(np) = \mathcal{P}(\mu)$ Proof: Let $X_n \sim B(n, p)$ where $n \to \infty$ and $p_n = \frac{\mu}{n} \to 0$

$$P(X_n = k) = \binom{n}{k} p_n^k \cdot (1 - p_n)^{n-k}$$

Poisson Distribution

Theorem

If $X \sim B(n, p)$ with *n* "very big", *p* "very small". Then $X \approx \mathcal{P}(np) = \mathcal{P}(\mu)$ Proof:

Let $X_n \sim B(n,p)$ where $n \to \infty$ and $p_n = \frac{\mu}{n} \to 0$

$$P(X_n = k) = {n \choose k} p_n^k \cdot (1 - p_n)^{n-k}$$
$$= {n \choose k} \cdot \left(\frac{\mu}{n}\right)^k \cdot \left(1 - \frac{\mu}{n}\right)^{n-k}$$

Poisson Distribution

Theorem

If $X \sim B(n, p)$ with *n* "very big", *p* "very small". Then $X \approx \mathcal{P}(np) = \mathcal{P}(\mu)$ Proof:

Let $X_n \sim B(n,p)$ where $n \to \infty$ and $p_n = \frac{\mu}{n} \to 0$

$$P(X_n = k) = {\binom{n}{k}} p_n^k \cdot (1 - p_n)^{n-k}$$
$$= {\binom{n}{k}} \cdot \left(\frac{\mu}{n}\right)^k \cdot \left(1 - \frac{\mu}{n}\right)^{n-k}$$
$$= \frac{n!}{(n-k)!} \cdot \frac{1}{k!} \cdot \frac{\mu^k}{n^k} \cdot \left(1 - \frac{\mu}{n}\right)^{n-k}$$

Poisson Distribution

Theorem

If $X \sim B(n, p)$ with *n* "very big", *p* "very small". Then $X \approx \mathcal{P}(np) = \mathcal{P}(\mu)$ Proof:

Let $X_n \sim B(n, p)$ where $n \to \infty$ and $p_n = \frac{\mu}{n} \to 0$

$$P(X_n = k) = {\binom{n}{k}} p_n^k \cdot (1 - p_n)^{n-k}$$
$$= {\binom{n}{k}} \cdot \left(\frac{\mu}{n}\right)^k \cdot \left(1 - \frac{\mu}{n}\right)^{n-k}$$
$$= \frac{n!}{(n-k)!} \cdot \frac{1}{k!} \cdot \frac{\mu^k}{n^k} \cdot \left(1 - \frac{\mu}{n}\right)^{n-k}$$
$$\lim_{k \to \infty} P(X_n = k) = n^k \cdot \frac{1}{k!} \cdot \frac{\mu^k}{n^k} \cdot e^{-\mu}$$

Poisson Distribution

Theorem

n

If $X \sim B(n, p)$ with *n* "very big", *p* "very small". Then $X \approx \mathcal{P}(np) = \mathcal{P}(\mu)$ Proof:

Let $X_n \sim B(n,p)$ where $n \to \infty$ and $p_n = \frac{\mu}{n} \to 0$

$$P(X_n = k) = {\binom{n}{k}} p_n^k \cdot (1 - p_n)^{n-k}$$
$$= {\binom{n}{k}} \cdot \left(\frac{\mu}{n}\right)^k \cdot \left(1 - \frac{\mu}{n}\right)^{n-k}$$
$$= \frac{n!}{(n-k)!} \cdot \frac{1}{k!} \cdot \frac{\mu^k}{n^k} \cdot \left(1 - \frac{\mu}{n}\right)^{n-k}$$
$$\lim_{k \to \infty} P(X_n = k) = n^k \cdot \frac{1}{k!} \cdot \frac{\mu^k}{n^k} \cdot e^{-\mu} = \frac{\mu^k}{k!} \cdot e^{-\mu}$$

Poisson Distribution

Theorem

If $X \sim B(n, p)$ with *n* "very big", *p* "very small". Then $X \approx \mathcal{P}(np) = \mathcal{P}(\mu)$ Proof: Let $X_n \sim B(n, p)$ where $n \to \infty$ and $p_n = \frac{\mu}{n} \to 0$

$$P(X_n = k) = {\binom{n}{k}} p_n^k \cdot (1 - p_n)^{n-k}$$
$$= {\binom{n}{k}} \cdot \left(\frac{\mu}{n}\right)^k \cdot \left(1 - \frac{\mu}{n}\right)^{n-k}$$
$$= \frac{n!}{(n-k)!} \cdot \frac{1}{k!} \cdot \frac{\mu^k}{n^k} \cdot \left(1 - \frac{\mu}{n}\right)^{n-k}$$
$$\lim_{n \to \infty} P(X_n = k) = n^k \cdot \frac{1}{k!} \cdot \frac{\mu^k}{n^k} \cdot e^{-\mu} = \frac{\mu^k}{k!} \cdot e^{-\mu}$$

Now: Odd exercises, Section 5.4

◆□▶ <個▶ < => < => = -9 Q @