Flavor of estimation problems	Exponential Distribution	Normal Distribution	Exercises	Monday

Lecture 13: Some Important Continuous Probability Distributions (Part 2)

Kateřina Staňková

Statistics (MAT1003)

May 10, 2012

(日) (日) (日) (日) (日) (日) (日)

Flavor of estimation problems	Exponential Distribution	Normal Distribution	Exercises	Monday
Outline				

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- Flavor of estimation problems ...
- 2 Exponential Distribution
 - Formulation
 - Expectation etc.
 - Application of the Exponential distribution
- 3 Normal Distribution
 - Basics
 - Examples
- 4 Exercises

5 Monday

book: Sections 6.2-6.4,6.6

Flavor of estimation problems	Exponential Distribution	Normal Distribution	Exercises	Monday
And now				

Flavor of estimation problems ...

- 2 Exponential Distribution
 - Formulation
 - Expectation etc.
 - Application of the Exponential distribution
- 3 Normal Distribution
 - Basics
 - Examples

4 Exercises

5 Monday

Flavor of estimation problems	Exponential Distribution	Normal Distribution	Exercises	Monday	
<u> </u>					
Example 3: Estimation in a uniform distribution $U(0, L)$					

Let $X \sim U(0, L)$, with L unknown

Flavor of estimation problems	Exponential Distribution	Normal Distribution	Exercises	Monday

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Example 3: Estimation in a uniform distribution U(0, L)

- Let $X \sim U(0, L)$, with L unknown
 - We want to estimate L

Flavor of estimation problems	Exponential Distribution	Normal Distribution	Exercises	Monday

- Let $X \sim U(0, L)$, with L unknown
 - We want to estimate L
 - For that purpose we draw $100 \times$ independently from U(0, L)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Flavor of estimation problems	Exponential Distribution	Normal Distribution	Exercises	Monday

- Let $X \sim U(0, L)$, with L unknown
 - We want to estimate L
 - For that purpose we draw $100 \times$ independently from U(0, L)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

• Let X_i be the RV corresponding to the ith drawing

Flavor of estimation problems	Exponential Distribution	Normal Distribution	Exercises	Monday

- Let $X \sim U(0, L)$, with L unknown
 - We want to estimate L
 - For that purpose we draw $100 \times$ independently from U(0, L)
 - Let X_i be the RV corresponding to the ith drawing
 - Then X₁, X₂,..., X₁₀₀ are independent and indentically distributed (IID) according to U(0, L)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Flavor of estimation problems	Exponential Distribution	Normal Distribution	Exercises	Monday

- Let $X \sim U(0, L)$, with L unknown
 - We want to estimate L
 - For that purpose we draw $100 \times$ independently from U(0, L)
 - Let X_i be the RV corresponding to the ith drawing
 - Then X₁, X₂,..., X₁₀₀ are independent and indentically distributed (IID) according to U(0, L)

(日) (日) (日) (日) (日) (日) (日)

• We call $X_1, X_2, \ldots, X_{100}$ a random sample

Flavor of estimation problems	Exponential Distribution	Normal Distribution	Exercises	Monday

- Let $X \sim U(0, L)$, with L unknown
 - We want to estimate L
 - For that purpose we draw $100 \times$ independently from U(0, L)
 - Let X_i be the RV corresponding to the ith drawing
 - Then X₁, X₂,..., X₁₀₀ are independent and indentically distributed (IID) according to U(0, L)

(日) (日) (日) (日) (日) (日) (日)

- We call $X_1, X_2, \ldots, X_{100}$ a random sample
- After 100 drawings we have 100 realizations, denoted by $X_1, X_2, \ldots, X_{100}$

Flavor of estimation problems	Exponential Distribution	Normal Distribution	Exercises	Monday
Example 3: Estin (cont.)	nation in a unifor	m distribution	<i>U</i> (0, <i>L</i>)	

Flavor of estimation problems	Exponential Distribution	Normal Distribution	Exercises	Monday
-	nation in a unifor	m distribution	<i>U</i> (0, <i>L</i>)	
(cont.)				
Define Z = max	({ X ₁ ,, X ₁₀₀ }			
	. [

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Flavor of estimation problems	Exponential Distribution	Normal Distribution	Exercises	Monday

- Define $Z = \max\{X_1, ..., X_{100}\}$
- Then $F(z) = P(Z \le z) = \prod_{i=1}^{100} P(X_i \le z) = {\binom{z}{L}}^{100}, 0 \le z \le L$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Flavor of estimation problems	Exponential Distribution	Normal Distribution	Exercises	Monday

- Define $Z = \max\{X_1, ..., X_{100}\}$
- Then $F(z) = P(Z \le z) = \prod_{i=1}^{100} P(X_i \le z) = {\binom{z}{L}}^{100}, 0 \le z \le L$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

• Hence $f(z) = F'(z) = 100 \cdot \left(\frac{z}{L}\right)^{99} \cdot \frac{1}{L}$

Flavor of estimation problems	Exponential Distribution	Normal Distribution	Exercises	Monday

- Define $Z = \max\{X_1, ..., X_{100}\}$
- Then $F(z) = P(Z \le z) = \prod_{i=1}^{100} P(X_i \le z) = (\frac{z}{L})^{100}, 0 \le z \le L$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

- Hence $f(z) = F'(z) = 100 \cdot (\frac{z}{L})^{99} \cdot \frac{1}{L}$
- Then $E(Z) = \int_0^L z \cdot 100 \cdot (\frac{z}{L})^{99} \cdot \frac{1}{L} dz = 100 \int_0^L (\frac{z}{L})^{100} dz$ = $\left[100 \cdot \frac{1}{101} (\frac{z}{L})^{101} \cdot L\right]_{z=0}^L = \frac{100}{101}L$

Flavor of estimation problems	Exponential Distribution	Normal Distribution	Exercises	Monday

- Define $Z = \max\{X_1, ..., X_{100}\}$
- Then $F(z) = P(Z \le z) = \prod_{i=1}^{100} P(X_i \le z) = (\frac{z}{L})^{100}, 0 \le z \le L$
- Hence $f(z) = F'(z) = 100 \cdot (\frac{z}{L})^{99} \cdot \frac{1}{L}$
- Then $E(Z) = \int_0^L z \cdot 100 \cdot (\frac{z}{L})^{99} \cdot \frac{1}{L} dz = 100 \int_0^L (\frac{z}{L})^{100} dz$ = $\left[100 \cdot \frac{1}{101} (\frac{z}{L})^{101} \cdot L\right]_{z=0}^L = \frac{100}{101}L$
- As an estimate for *L* we now define the RV $B = \frac{101}{100} \cdot Z$. We have E(B) = L

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Flavor of estimation problems	Exponential Distribution	Normal Distribution	Exercises	Monday

- Define $Z = \max\{X_1, ..., X_{100}\}$
- Then $F(z) = P(Z \le z) = \prod_{i=1}^{100} P(X_i \le z) = (\frac{z}{L})^{100}, 0 \le z \le L$
- Hence $f(z) = F'(z) = 100 \cdot (\frac{z}{L})^{99} \cdot \frac{1}{L}$
- Then $E(Z) = \int_0^L z \cdot 100 \cdot (\frac{z}{L})^{99} \cdot \frac{1}{L} dz = 100 \int_0^L (\frac{z}{L})^{100} dz$ = $\left[100 \cdot \frac{1}{101} (\frac{z}{L})^{101} \cdot L\right]_{z=0}^L = \frac{100}{101}L$
- As an estimate for *L* we now define the RV $B = \frac{101}{100} \cdot Z$. We have E(B) = L

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• B is called an unbiased estimator for L

Flavor of estimation problems	Exponential Distribution	Normal Distribution	Exercises	Monday
Estimates				

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□▶

Flavor of estimation problems	Exponential Distribution	Normal Distribution	Exercises	Monday
Estimates				
Point estimate -	solution is a single po	int		

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○

Flavor of estimation problems	Exponential Distribution	Normal Distribution	Exercises	Monday

Estimates

- Point estimate solution is a single point
- Interval estimate solution is an interval

Flavor of estimation problems	Exponential Distribution	Normal Distribution	Exercises	Monday

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Estimates

- Point estimate solution is a single point
- Interval estimate solution is an interval

2 common point estimates

• The sample mean -
$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

Flavor of estimation problems	Exponential Distribution	Normal Distribution	Exercises	Monday

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Estimates

- Point estimate solution is a single point
- Interval estimate solution is an interval

2 common point estimates

- The sample mean $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$
- The sample variance $\bar{S}^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i \bar{X})^2$

Flavor of estimation problems	Exponential Distribution	Normal Distribution	Exercises	Monday

Estimates

- Point estimate solution is a single point
- Interval estimate solution is an interval

2 common point estimates

- The sample mean $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$
- The sample variance $\bar{S}^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i \bar{X})^2$

Observation 1

•
$$E(\bar{X}) = E(\frac{1}{n}\sum_{i=1}^{n}X_i) = \frac{1}{n}\sum_{i=1}^{n}E(X_i) = \frac{1}{n}\sum_{i=1}^{n}\mu_X = \frac{1}{n}\cdot n\cdot \mu_X = \mu_X$$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲≣ めるの

Flavor of estimation problems	Exponential Distribution	Normal Distribution	Exercises	Monday
Observation 2				

▲□▶▲□▶▲≡▶▲≡▶ ≡ のへで

Flavor of estimation problems	Exponential Distribution	Normal Distribution	Exercises	Monday

Observation 2

Let X_1, \ldots, X_n be IID with $\mu = E(X_i), \sigma^2 = V(X_i)$. Then

Flavor of estimation problems	Exponential Distribution	Normal Distribution	Exercises	Monday

Observation 2

Let X_1, \ldots, X_n be IID with $\mu = E(X_i), \sigma^2 = V(X_i)$. Then

$$V(\bar{X}) = V\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}\right)$$

Flavor of estimation problems	Exponential Distribution	Normal Distribution	Exercises	Monday

Let X_1, \ldots, X_n be IID with $\mu = E(X_i), \sigma^2 = V(X_i)$. Then

$$V(\bar{X}) = V\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}\right) = V(\frac{1}{n}X_{1} + \frac{1}{n}X_{2} + \ldots + \frac{1}{n}X_{n})$$

Flavor of estimation problems	Exponential Distribution	Normal Distribution	Exercises	Monday

Let X_1, \ldots, X_n be IID with $\mu = E(X_i), \sigma^2 = V(X_i)$. Then

$$V(\bar{X}) = V\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}\right) = V(\frac{1}{n}X_{1} + \frac{1}{n}X_{2} + \ldots + \frac{1}{n}X_{n})$$
$$= \frac{1}{n^{2}}V(X_{1}) + \frac{1}{n^{2}}V(X_{2}) + \ldots + \frac{1}{n^{2}}V(X_{n})$$

Flavor of estimation problems	Exponential Distribution	Normal Distribution	Exercises	Monday

Let X_1, \ldots, X_n be IID with $\mu = E(X_i), \sigma^2 = V(X_i)$. Then

$$V(\bar{X}) = V\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}\right) = V(\frac{1}{n}X_{1} + \frac{1}{n}X_{2} + \ldots + \frac{1}{n}X_{n})$$
$$= \frac{1}{n^{2}}V(X_{1}) + \frac{1}{n^{2}}V(X_{2}) + \ldots + \frac{1}{n^{2}}V(X_{n})$$
$$= \frac{1}{n^{2}} \cdot n \cdot V(X_{i})$$

Flavor of estimation problems	Exponential Distribution	Normal Distribution	Exercises	Monday

Let X_1, \ldots, X_n be IID with $\mu = E(X_i), \sigma^2 = V(X_i)$. Then

$$V(\bar{X}) = V\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}\right) = V(\frac{1}{n}X_{1} + \frac{1}{n}X_{2} + \dots + \frac{1}{n}X_{n})$$

= $\frac{1}{n^{2}}V(X_{1}) + \frac{1}{n^{2}}V(X_{2}) + \dots + \frac{1}{n^{2}}V(X_{n})$
= $\frac{1}{n^{2}} \cdot n \cdot V(X_{i}) = \frac{1}{n} \cdot V(X_{i})$

Flavor of estimation problems	Exponential Distribution	Normal Distribution	Exercises	Monday

Let X_1, \ldots, X_n be IID with $\mu = E(X_i), \sigma^2 = V(X_i)$. Then

$$V(\bar{X}) = V\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}\right) = V(\frac{1}{n}X_{1} + \frac{1}{n}X_{2} + \dots + \frac{1}{n}X_{n})$$

= $\frac{1}{n^{2}}V(X_{1}) + \frac{1}{n^{2}}V(X_{2}) + \dots + \frac{1}{n^{2}}V(X_{n})$
= $\frac{1}{n^{2}} \cdot n \cdot V(X_{i}) = \frac{1}{n} \cdot V(X_{i}) = \frac{1}{n}\sigma^{2}$

Flavor of estimation problems	Exponential Distribution	Normal Distribution	Exercises	Monday

Let X_1, \ldots, X_n be IID with $\mu = E(X_i), \sigma^2 = V(X_i)$. Then

$$V(\bar{X}) = V\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}\right) = V(\frac{1}{n}X_{1} + \frac{1}{n}X_{2} + \dots + \frac{1}{n}X_{n})$$
$$= \frac{1}{n^{2}}V(X_{1}) + \frac{1}{n^{2}}V(X_{2}) + \dots + \frac{1}{n^{2}}V(X_{n})$$
$$= \frac{1}{n^{2}} \cdot n \cdot V(X_{i}) = \frac{1}{n} \cdot V(X_{i}) = \frac{1}{n}\sigma^{2}$$

Notice that
$$\underbrace{V(\bar{X}) = E\left\{(X - \mu)^2\right\}}_{\text{variance of sample mean}} \neq \underbrace{\bar{S}^2 \approx E\left\{(X_i - \bar{X})^2\right\}}_{\text{sample variance}}$$

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへで

Flavor of estimation problems	Exponential Distribution	Normal Distribution	Exercises	Monday

Let X_1, \ldots, X_n be IID with $\mu = E(X_i), \sigma^2 = V(X_i)$. Then

$$V(\bar{X}) = V\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}\right) = V(\frac{1}{n}X_{1} + \frac{1}{n}X_{2} + \ldots + \frac{1}{n}X_{n})$$

= $\frac{1}{n^{2}}V(X_{1}) + \frac{1}{n^{2}}V(X_{2}) + \ldots + \frac{1}{n^{2}}V(X_{n})$
= $\frac{1}{n^{2}} \cdot n \cdot V(X_{i}) = \frac{1}{n} \cdot V(X_{i}) = \frac{1}{n}\sigma^{2}$

Notice that
$$V(\bar{X}) = E\left\{(X - \mu)^2\right\} \neq \bar{S}^2 \approx E\left\{(X_i - \bar{X})^2\right\}$$

variance of sample mean sample variance
Moreover, Observation 2 is independent of the actual distribution of the X_i

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲≣ めるの

Flavor of estimation problems	Exponential Distribution	Normal Distribution	Exercises	Monday
Example 4				

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ▶

Flavor of estimation problems	Exponential Distribution	Normal Distribution	Exercises	Monday

Example 4

Let *X* have the following distribution: $P(X = 1) = \bar{p}$, $P(X = 0) = 1 - \bar{p}$ with \bar{p} unknown (0 elsewhere). Estimate \bar{p}

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Flavor of estimation problems	Exponential Distribution	Normal Distribution	Exercises	Monday

Example 4

Let X have the following distribution: $P(X = 1) = \bar{p}$, $P(X = 0) = 1 - \bar{p}$ with \bar{p} unknown (0 elsewhere). Estimate \bar{p}

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• Notice that $\mu_X = E(X) = \bar{p}$, $V(X) = \bar{p} - \bar{p}^2 = \bar{p}(1 - \bar{p})$

Flavor of estimation problems	Exponential Distribution	Normal Distribution	Exercises	Monday

Example 4

Let X have the following distribution: $P(X = 1) = \bar{p}$, $P(X = 0) = 1 - \bar{p}$ with \bar{p} unknown (0 elsewhere). Estimate \bar{p}

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- Notice that $\mu_X = E(X) = \overline{p}$, $V(X) = \overline{p} \overline{p}^2 = \overline{p}(1 \overline{p})$
- We draw X_1, \ldots, X_n from this distribution. Then:

Flavor of estimation problems	Exponential Distribution	Normal Distribution	Exercises	Monday

Example 4

Let X have the following distribution: $P(X = 1) = \bar{p}$, $P(X = 0) = 1 - \bar{p}$ with \bar{p} unknown (0 elsewhere). Estimate \bar{p}

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- Notice that $\mu_X = E(X) = \bar{p}$, $V(X) = \bar{p} \bar{p}^2 = \bar{p}(1 \bar{p})$
- We draw X_1, \ldots, X_n from this distribution. Then:

•
$$E(\bar{X}) = \frac{1}{n} \sum_{i=1}^{n} E(X_i) = \frac{1}{n} \cdot n \cdot E(X) = \bar{p}$$

Flavor of estimation problems	Exponential Distribution	Normal Distribution	Exercises	Monday

Example 4

Let X have the following distribution: $P(X = 1) = \bar{p}$, $P(X = 0) = 1 - \bar{p}$ with \bar{p} unknown (0 elsewhere). Estimate \bar{p}

- Notice that $\mu_X = E(X) = \bar{p}$, $V(X) = \bar{p} \bar{p}^2 = \bar{p}(1 \bar{p})$
- We draw X_1, \ldots, X_n from this distribution. Then:
 - $E(\bar{X}) = \frac{1}{n} \sum_{i=1}^{n} E(X_i) = \frac{1}{n} \cdot n \cdot E(X) = \bar{p} \Rightarrow \bar{X}$ unbiased estimator for $\mu_X = \bar{p}$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Normal Distribution Exe

Exercises Monday

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Example 4

Let X have the following distribution: $P(X = 1) = \bar{p}$, $P(X = 0) = 1 - \bar{p}$ with \bar{p} unknown (0 elsewhere). Estimate \bar{p}

- Notice that $\mu_X = E(X) = \overline{p}$, $V(X) = \overline{p} \overline{p}^2 = \overline{p}(1 \overline{p})$
- We draw X_1, \ldots, X_n from this distribution. Then:
 - $E(\bar{X}) = \frac{1}{n} \sum_{i=1}^{n} E(X_i) = \frac{1}{n} \cdot n \cdot E(X) = \bar{p} \Rightarrow \bar{X}$ unbiased estimator for $\mu_X = \bar{p}$
 - $V(\bar{X}) = \frac{1}{n^2} \sum_{i=1}^n V(X_i) = \frac{1}{n^2} \cdot n \cdot \bar{p}(1-\bar{p}) = \frac{1}{n} \cdot \bar{p}(1-\bar{p})$

Flavor of estimation	problems
----------------------	----------

Normal Distribution Exe

Exercises Monday

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Example 4

Let X have the following distribution: $P(X = 1) = \bar{p}$, $P(X = 0) = 1 - \bar{p}$ with \bar{p} unknown (0 elsewhere). Estimate \bar{p}

- Notice that $\mu_X = E(X) = \overline{p}$, $V(X) = \overline{p} \overline{p}^2 = \overline{p}(1 \overline{p})$
- We draw X_1, \ldots, X_n from this distribution. Then:
 - $E(\bar{X}) = \frac{1}{n} \sum_{i=1}^{n} E(X_i) = \frac{1}{n} \cdot n \cdot E(X) = \bar{p} \Rightarrow \bar{X}$ unbiased estimator for $\mu_X = \bar{p}$
 - $V(\bar{X}) = \frac{1}{n^2} \sum_{i=1}^n V(X_i) = \frac{1}{n^2} \cdot n \cdot \bar{p}(1-\bar{p}) = \frac{1}{n} \cdot \bar{p}(1-\bar{p})$ HW: What is the probability distribution of $\sum_{i=1}^n X_i$?

Flavor of estimation problems	Exponential Distribution	Normal Distribution	Exercises	Monday
And now				

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Flavor of estimation problems ...

- 2 Exponential Distribution
 - Formulation
 - Expectation etc.
 - Application of the Exponential distribution
- 3 Normal Distribution
 - Basics
 - Examples

4 Exercises

5 Monday

Flavor of estimation problems	Exponential Distribution ●○○	Normal Distribution	Exercises	Monday
Formulation				

▲□▶▲□▶▲≡▶▲≡▶ ≡ のへで

Flavor of estimation problems	Exponential Distribution ●○○	Normal Distribution	Exercises	Monday
Formulation				

What is exponential PDF?

A RV X is exponentially distributed with parameter λ (book: parameter $1/\beta$), $X \sim \text{Exp}(\lambda)$, if

Flavor of estimation problems	Exponential Distribution ●○○	Normal Distribution	Exercises	Monday
Formulation				

What is exponential PDF?

A RV X is exponentially distributed with parameter λ (book: parameter $1/\beta$), $X \sim \text{Exp}(\lambda)$, if $f(x) = \begin{cases} \lambda \exp(-\lambda x), & x > 0, \\ 0, & \text{elsewhere} \end{cases}$

Flavor of estimation problems	Exponential Distribution ●○○	Normal Distribution	Exercises	Monday
Formulation				

What is exponential PDF?

A RV X is exponentially distributed with parameter λ (book: parameter $1/\beta$), $X \sim \text{Exp}(\lambda)$, if $\lambda \exp(-\lambda x), \quad x > 0,$ 0, elsewhere $f(x) = \langle$ 1.5 1.4 $\lambda = 0.5 - \frac{1}{\lambda} = 1.0 - \frac{1}{\lambda} = 1.5 - \frac{1}{\lambda}$ 1.3 1.2 1.1 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 2 3 4 5 0

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Normal Distribution

Exercises Monday

Expectation etc.

Computation of E(X), F(X) and V(X) for the Exponential distribution

Book: $\beta = \frac{1}{\lambda}$, but λ -notation is more standard ...

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Flavor	of estimation	problems	Exponential Dis

Normal Distribution

Exercises Monday

Expectation etc.

Computation of E(X), F(X) and V(X) for the Exponential distribution

Book: $\beta = \frac{1}{\lambda}$, but λ -notation is more standard ...

・ロト・四ト・モー・ 中下・ 日・ うらぐ

Flavor of estimation problems	Exponential Distribution	Normal Distribution	Exercises	Monday
	000			

Expectation etc.

Computation of E(X), F(X) and V(X) for the Exponential distribution

$$\mathsf{E}(X) = \int_0^\infty x \, f(x) \, \mathrm{d}x$$

Book: $\beta = \frac{1}{\lambda}$, but λ -notation is more standard ...

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

lavor of estimation problems	X
------------------------------	---

Normal Distribution

Exercises Monday

Expectation etc.

Computation of E(X), F(X) and V(X) for the Exponential distribution

$$E(X) = \int_0^\infty x f(x) \, \mathrm{d}x = \int_0^\infty x \cdot \lambda \, \exp(-\lambda \, x) \, \mathrm{d}x$$

Book: $\beta = \frac{1}{\lambda}$, but λ -notation is more standard ...

・ロト・西ト・ヨト・ヨト・日・ つへぐ

Flavor of es	timation	prob	lems	
--------------	----------	------	------	--

Normal Distribution

Exercises Monday

Expectation etc.

Computation of E(X), F(X) and V(X) for the Exponential distribution

$$E(X) = \int_0^\infty x f(x) dx = \int_0^\infty x \cdot \lambda \exp(-\lambda x) dx$$
$$\stackrel{bp}{=} [-x \cdot \exp(-\lambda x)]_{x=0}^\infty + \int_0^\infty \exp(-\lambda x) dx$$

F	lavor	of	est	imati	ion	prob	lems	
---	-------	----	-----	-------	-----	------	------	--

Normal Distribution

Exercises Monday

Expectation etc.

Computation of E(X), F(X) and V(X) for the Exponential distribution

$$E(X) = \int_0^\infty x f(x) dx = \int_0^\infty x \cdot \lambda \exp(-\lambda x) dx$$
$$\stackrel{bp}{=} \left[-x \cdot \exp(-\lambda x) \right]_{x=0}^\infty + \int_0^\infty \exp(-\lambda x) dx$$
$$= -0 + 0 + \left[-\frac{1}{\lambda} \cdot \exp(-\lambda x) \right]_{x=0}^\infty$$

F	lavor	of	est	imati	ion	prob	lems	
---	-------	----	-----	-------	-----	------	------	--

Normal Distribution

Exercises Monday

Expectation etc.

Computation of E(X), F(X) and V(X) for the Exponential distribution

$$E(X) = \int_0^\infty x f(x) dx = \int_0^\infty x \cdot \lambda \exp(-\lambda x) dx$$
$$\stackrel{bp}{=} \left[-x \cdot \exp(-\lambda x) \right]_{x=0}^\infty + \int_0^\infty \exp(-\lambda x) dx$$
$$= -0 + 0 + \left[-\frac{1}{\lambda} \cdot \exp(-\lambda x) \right]_{x=0}^\infty = \frac{1}{\lambda}$$

Normal Distribution

Exercises Monday

Expectation etc.

Computation of E(X), F(X) and V(X) for the Exponential distribution

$$E(X) = \int_0^\infty x f(x) dx = \int_0^\infty x \cdot \lambda \exp(-\lambda x) dx$$
$$\stackrel{bp}{=} [-x \cdot \exp(-\lambda x)]_{x=0}^\infty + \int_0^\infty \exp(-\lambda x) dx$$
$$= -0 + 0 + \left[-\frac{1}{\lambda} \cdot \exp(-\lambda x)\right]_{x=0}^\infty = \frac{1}{\lambda}$$
$$F(x) = 1 - \exp(-\lambda x) \quad \text{for } x > 0 \text{ and } 0 \text{ elsewhere}$$

Normal Distribution

Exercises Monday

Expectation etc.

Computation of E(X), F(X) and V(X) for the Exponential distribution

$$E(X) = \int_0^\infty x f(x) dx = \int_0^\infty x \cdot \lambda \exp(-\lambda x) dx$$
$$\stackrel{bp}{=} [-x \cdot \exp(-\lambda x)]_{x=0}^\infty + \int_0^\infty \exp(-\lambda x) dx$$
$$= -0 + 0 + \left[-\frac{1}{\lambda} \cdot \exp(-\lambda x)\right]_{x=0}^\infty = \frac{1}{\lambda}$$
$$F(x) = 1 - \exp(-\lambda x) \quad \text{for } x > 0 \text{ and } 0 \text{ elsewhere}$$
$$E(X^2) = \frac{2}{\lambda^2}$$

Normal Distribution

Exercises Monday

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ●

Expectation etc.

Computation of E(X), F(X) and V(X) for the Exponential distribution

$$E(X) = \int_0^\infty x f(x) dx = \int_0^\infty x \cdot \lambda \exp(-\lambda x) dx$$

$$\stackrel{bp}{=} [-x \cdot \exp(-\lambda x)]_{x=0}^\infty + \int_0^\infty \exp(-\lambda x) dx$$

$$= -0 + 0 + \left[-\frac{1}{\lambda} \cdot \exp(-\lambda x) \right]_{x=0}^\infty = \frac{1}{\lambda}$$

$$F(x) = 1 - \exp(-\lambda x) \quad \text{for } x > 0 \text{ and } 0 \text{ elsewhere}$$

$$E(X^2) = \frac{2}{\lambda^2}$$

$$V(X) = \frac{2}{\lambda^2} - \left(\frac{1}{\lambda}\right)^2 = \frac{1}{\lambda^2}$$

Flavor of estimation problems	Exponential Distribution	Normal Distribution	Exercises	Monday
Application of the Exponential distrib	ution			
What is it good for?				

Exponential Distribution	Normal Distribution	Exercises	Monday
ibution			
ributed according to Po		$X \sim \mathcal{P}(\mu),$	
	ooo ibution ? ributed according to Po	oo ooo	ributed according to Poisson Process, i.e., $X \sim \mathcal{P}(\mu)$,

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○

Exponential Distribution

Normal Distribution

Exercises Monday

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

Application of the Exponential distribution

What is it good for?

- Imagine X distributed according to Poisson Process, i.e., X ~ P(μ), i.e., we have on average μ of arrivals per time unit
- Then the time between 2 arrivals, the so-called interarrival time is exponentially distributed with parameter $\lambda = \mu$ (book: $\beta = \frac{1}{\mu}$)

Exponential Distribution

Normal Distribution

Exercises Monday

Application of the Exponential distribution

What is it good for?

- Imagine X distributed according to Poisson Process, i.e., X ~ P(μ), i.e., we have on average μ of arrivals per time unit
- Then the time between 2 arrivals, the so-called interarrival time is exponentially distributed with parameter $\lambda = \mu$ (book: $\beta = \frac{1}{\mu}$)

Example 5

Suppose on average 6 people call some service number per minute. What is the probability that:

- (a) in the next 3 minutes at least 25 people call?
- (b) there is a gap of at least 30 seconds between 2 successive calls?

Exponential Distribution

Normal Distribution

Exercises Monday

Application of the Exponential distribution

What is it good for?

- Imagine X distributed according to Poisson Process, i.e., X ~ P(μ), i.e., we have on average μ of arrivals per time unit
- Then the time between 2 arrivals, the so-called interarrival time is exponentially distributed with parameter $\lambda = \mu$ (book: $\beta = \frac{1}{\mu}$)

Example 5

Suppose on average 6 people call some service number per minute. What is the probability that:

- (a) in the next 3 minutes at least 25 people call?
- (b) there is a gap of at least 30 seconds between 2 successive calls?
- (a) $X = \sharp$ calls in 3 minutes

Exponential Distribution

Normal Distribution

Exercises Monday

Application of the Exponential distribution

What is it good for?

- Imagine X distributed according to Poisson Process, i.e., X ~ P(μ), i.e., we have on average μ of arrivals per time unit
- Then the time between 2 arrivals, the so-called interarrival time is exponentially distributed with parameter $\lambda = \mu$ (book: $\beta = \frac{1}{\mu}$)

Example 5

Suppose on average 6 people call some service number per minute. What is the probability that:

- (a) in the next 3 minutes at least 25 people call?
- (b) there is a gap of at least 30 seconds between 2 successive calls?
- (a) $X = \sharp$ calls in 3 minutes $\Rightarrow X \sim \mathcal{P}(18)$ minutes (time unit: 3 minutes here)

Exponential Distribution

Normal Distribution

Exercises Monday

Application of the Exponential distribution

What is it good for?

- Imagine X distributed according to Poisson Process, i.e., X ~ P(μ), i.e., we have on average μ of arrivals per time unit
- Then the time between 2 arrivals, the so-called interarrival time is exponentially distributed with parameter $\lambda = \mu$ (book: $\beta = \frac{1}{\mu}$)

Example 5

Suppose on average 6 people call some service number per minute. What is the probability that:

- (a) in the next 3 minutes at least 25 people call?
- (b) there is a gap of at least 30 seconds between 2 successive calls?

(a) $X = \sharp$ calls in 3 minutes $\Rightarrow X \sim \mathcal{P}(18)$ minutes (time unit: 3 minutes here) $P(X \ge 25) =$

Exponential Distribution

Normal Distribution

Exercises Monday

Application of the Exponential distribution

What is it good for?

- Imagine X distributed according to Poisson Process, i.e., X ~ P(μ), i.e., we have on average μ of arrivals per time unit
- Then the time between 2 arrivals, the so-called interarrival time is exponentially distributed with parameter $\lambda = \mu$ (book: $\beta = \frac{1}{\mu}$)

Example 5

Suppose on average 6 people call some service number per minute. What is the probability that:

- (a) in the next 3 minutes at least 25 people call?
- (b) there is a gap of at least 30 seconds between 2 successive calls?

(a) $X = \sharp$ calls in 3 minutes $\Rightarrow X \sim \mathcal{P}(18)$ minutes (time unit: 3 minutes here) $P(X \ge 25) = 1 - P(X \le 25)$

Exponential Distribution

Normal Distribution

Exercises Monday

Application of the Exponential distribution

What is it good for?

- Imagine X distributed according to Poisson Process, i.e., X ~ P(μ), i.e., we have on average μ of arrivals per time unit
- Then the time between 2 arrivals, the so-called interarrival time is exponentially distributed with parameter $\lambda = \mu$ (book: $\beta = \frac{1}{\mu}$)

Example 5

Suppose on average 6 people call some service number per minute. What is the probability that:

- (a) in the next 3 minutes at least 25 people call?
- (b) there is a gap of at least 30 seconds between 2 successive calls?

(a) $X = \sharp$ calls in 3 minutes $\Rightarrow X \sim \mathcal{P}(18)$ minutes (time unit: 3 minutes here) $P(X \ge 25) = 1 - P(X \le 25) = 1 - 0.9317$

Exponential Distribution

Normal Distribution

Exercises Monday

Application of the Exponential distribution

What is it good for?

- Imagine X distributed according to Poisson Process, i.e., X ~ P(μ), i.e., we have on average μ of arrivals per time unit
- Then the time between 2 arrivals, the so-called interarrival time is exponentially distributed with parameter $\lambda = \mu$ (book: $\beta = \frac{1}{\mu}$)

Example 5

Suppose on average 6 people call some service number per minute. What is the probability that:

- (a) in the next 3 minutes at least 25 people call?
- (b) there is a gap of at least 30 seconds between 2 successive calls?

(a) $X = \sharp$ calls in 3 minutes $\Rightarrow X \sim \mathcal{P}(18)$ minutes (time unit: 3 minutes here) $P(X \ge 25) = 1 - P(X \le 25) = 1 - 0.9317 = 0.0683$

Normal Distribution

Exercises Monday

Application of the Exponential distribution

What is it good for?

- Imagine X distributed according to Poisson Process, i.e., X ~ P(μ), i.e., we have on average μ of arrivals per time unit
- Then the time between 2 arrivals, the so-called interarrival time is exponentially distributed with parameter $\lambda = \mu$ (book: $\beta = \frac{1}{\mu}$)

Example 5

Suppose on average 6 people call some service number per minute. What is the probability that:

- (a) in the next 3 minutes at least 25 people call?
- (b) there is a gap of at least 30 seconds between 2 successive calls?

(a) $X = \sharp$ calls in 3 minutes $\Rightarrow X \sim \mathcal{P}(18)$ minutes (time unit: 3 minutes here) $P(X \ge 25) = 1 - P(X \le 25) = 1 - 0.9317 = 0.0683$

(b) \mathbf{Y} : interarrival time between two calls \Rightarrow

Normal Distribution

Exercises Monday

Application of the Exponential distribution

What is it good for?

- Imagine X distributed according to Poisson Process, i.e., X ~ P(μ), i.e., we have on average μ of arrivals per time unit
- Then the time between 2 arrivals, the so-called interarrival time is exponentially distributed with parameter $\lambda = \mu$ (book: $\beta = \frac{1}{\mu}$)

Example 5

Suppose on average 6 people call some service number per minute. What is the probability that:

- (a) in the next 3 minutes at least 25 people call?
- (b) there is a gap of at least 30 seconds between 2 successive calls?

(a) $X = \sharp$ calls in 3 minutes $\Rightarrow X \sim \mathcal{P}(18)$ minutes (time unit: 3 minutes here) $P(X \ge 25) = 1 - P(X \le 25) = 1 - 0.9317 = 0.0683$

(b) Y : interarrival time between two calls \Rightarrow Y \sim Exp(λ = 18) per 3 minutes,

Normal Distribution

Exercises Monday

Application of the Exponential distribution

What is it good for?

- Imagine X distributed according to Poisson Process, i.e., X ~ P(μ), i.e., we have on average μ of arrivals per time unit
- Then the time between 2 arrivals, the so-called interarrival time is exponentially distributed with parameter $\lambda = \mu$ (book: $\beta = \frac{1}{\mu}$)

Example 5

Suppose on average 6 people call some service number per minute. What is the probability that:

- (a) in the next 3 minutes at least 25 people call?
- (b) there is a gap of at least 30 seconds between 2 successive calls?

(a) $X = \sharp$ calls in 3 minutes $\Rightarrow X \sim \mathcal{P}(18)$ minutes (time unit: 3 minutes here) $P(X \ge 25) = 1 - P(X \le 25) = 1 - 0.9317 = 0.0683$ (b) Y : interarrival time between two calls $\Rightarrow Y \sim \text{Exp}(\lambda = 18)$ per 3 minutes, (Y $\sim \text{Exp}(\lambda = 3)$ per 1/2 minute) $P(Y \ge 1/6) = \int_{1/6}^{\infty} 18 \cdot \exp(-18x) dx = e^{-3}$

Normal Distribution

Exercises Monday

Application of the Exponential distribution

What is it good for?

- Imagine X distributed according to Poisson Process, i.e., X ~ P(μ), i.e., we have on average μ of arrivals per time unit
- Then the time between 2 arrivals, the so-called interarrival time is exponentially distributed with parameter $\lambda = \mu$ (book: $\beta = \frac{1}{\mu}$)

Example 5

Suppose on average 6 people call some service number per minute. What is the probability that:

- (a) in the next 3 minutes at least 25 people call?
- (b) there is a gap of at least 30 seconds between 2 successive calls?

(a) $X = \sharp$ calls in 3 minutes $\Rightarrow X \sim \mathcal{P}(18)$ minutes (time unit: 3 minutes here) $P(X \ge 25) = 1 - P(X \le 25) = 1 - 0.9317 = 0.0683$ (b) Y : interarrival time between two calls $\Rightarrow Y \sim \text{Exp}(\lambda = 18)$ per 3 minutes, (Y $\sim \text{Exp}(\lambda = 3)$ per 1/2 minute) $P(Y \ge 1/6) = \int_{1/6}^{\infty} 18 \cdot \text{exp}(-18x) dx = e^{-3}$ (Similarly with $\lambda = 3 : P(Y \ge 1) = e^{-3}$)

Flavor of estimation problems	Exponential Distribution	Normal Distribution	Exercises	Monday
And now				

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- Flavor of estimation problems ...
- 2 Exponential Distribution
 - Formulation
 - Expectation etc.
 - Application of the Exponential distribution
- 3 Normal Distribution
 - Basics
 - Examples

4 Exercises

5 Monday

Flavor of estimation problems	Exponential Distribution	Normal Distribution ●○○	Exercises	Monday
Basics				

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ▶

Flavor of estimation	problems
----------------------	----------

Normal Distribution Exercises Monday ●○○

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Basics

An RV X has a normal distribution with parameters μ and σ (X ~ $\mathcal{N}(\mu, \sigma)$), if the density is given by

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{1}{2}(\frac{x-\mu}{\sigma})^2\right)$$
$$x \in \mathbb{R}$$

Normal Distribution ●○○ Exercises Mo

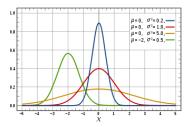
▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Monday

Basics

An RV X has a normal distribution with parameters μ and σ (X ~ $\mathcal{N}(\mu, \sigma)$), if the density is given by

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{1}{2}(\frac{x-\mu}{\sigma})^2\right)$$
$$x \in \mathbb{R}$$



Normal Distribution ●○○ Exercises Mo

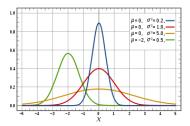
▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Monday

Basics

An RV X has a normal distribution with parameters μ and σ (X ~ $\mathcal{N}(\mu, \sigma)$), if the density is given by

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{1}{2}(\frac{x-\mu}{\sigma})^2\right)$$
$$x \in \mathbb{R}$$



Notice:

Normal Distribution ●○○ Exercises Mo

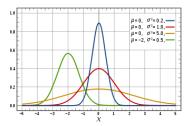
▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Monday

Basics

An RV X has a normal distribution with parameters μ and σ (X ~ $\mathcal{N}(\mu, \sigma)$), if the density is given by

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{1}{2}(\frac{x-\mu}{\sigma})^2\right)$$
$$x \in \mathbb{R}$$



Notice:

• *f* is symmetric around $x = \mu$

Normal Distribution ●○○ Exercises Mo

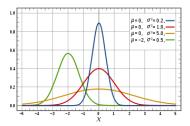
▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Monday

Basics

An RV X has a normal distribution with parameters μ and σ (X ~ $\mathcal{N}(\mu, \sigma)$), if the density is given by

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{1}{2}(\frac{x-\mu}{\sigma})^2\right)$$
$$x \in \mathbb{R}$$



Notice:

- *f* is symmetric around $x = \mu$
- *f* is maximal for $x = \mu$

Normal Distribution ●○○ Exercises Mo

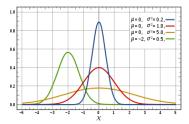
▲□▶▲□▶▲□▶▲□▶ □ のQ@

Monday

Basics

An RV X has a normal distribution with parameters μ and σ (X ~ $\mathcal{N}(\mu, \sigma)$), if the density is given by

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{1}{2}(\frac{x-\mu}{\sigma})^2\right)$$
$$x \in \mathbb{R}$$



Notice:

- *f* is symmetric around $x = \mu$
- *f* is maximal for $x = \mu$
- One can prove that $E(X) = \mu$, $V(X) = \sigma^2$

Normal Distribution ●○○ Exercises Mo

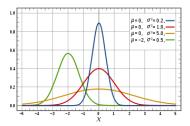
▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Monday

Basics

An RV X has a normal distribution with parameters μ and σ (X ~ $\mathcal{N}(\mu, \sigma)$), if the density is given by

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{1}{2}(\frac{x-\mu}{\sigma})^2\right)$$
$$x \in \mathbb{R}$$



Notice:

- *f* is symmetric around $x = \mu$
- *f* is maximal for $x = \mu$

• One can prove that $E(X) = \mu$, $V(X) = \sigma^2$

Theorem: $X \sim \mathcal{N}(\mu, \sigma)$ and $Z = \frac{X-\mu}{\sigma}$, then $Z \sim \mathcal{N}(0, 1)$ Proof:

Normal Distribution ●○○ Exercises Mo

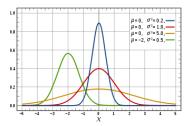
◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Monday

Basics

An RV X has a normal distribution with parameters μ and σ (X ~ $\mathcal{N}(\mu, \sigma)$), if the density is given by

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{1}{2}(\frac{x-\mu}{\sigma})^2\right)$$
$$x \in \mathbb{R}$$



Notice:

- *f* is symmetric around $x = \mu$
- *f* is maximal for $x = \mu$
- One can prove that $E(X) = \mu$, $V(X) = \sigma^2$

Theorem: $X \sim \mathcal{N}(\mu, \sigma)$ and $Z = \frac{\chi - \mu}{\sigma}$, then $Z \sim \mathcal{N}(0, 1)$ Proof: Let $\tilde{z} = \frac{\tilde{\chi} - \mu}{\sigma}$ Then $P(X \leq \tilde{\chi}) = P(\frac{\chi - \mu}{\sigma} \leq \frac{\tilde{\chi} - \mu}{\sigma}) = P(Z \leq \tilde{z})$

Normal Distribution ●○○ Exercises Mo

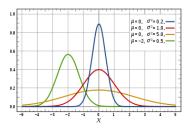
◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Monday

Basics

An RV X has a normal distribution with parameters μ and σ (X ~ $\mathcal{N}(\mu, \sigma)$), if the density is given by

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{1}{2}(\frac{x-\mu}{\sigma})^2\right)$$
$$x \in \mathbb{R}$$



Notice:

- *f* is symmetric around $x = \mu$
- *f* is maximal for $x = \mu$
- One can prove that $E(X) = \mu$, $V(X) = \sigma^2$

Theorem: $X \sim \mathcal{N}(\mu, \sigma)$ and $Z = \frac{X-\mu}{\sigma}$, then $Z \sim \mathcal{N}(0, 1)$ Proof: Let $\tilde{z} = \frac{\tilde{x}-\mu}{\sigma}$ Then $P(X \leq \tilde{x}) = P(\frac{X-\mu}{\sigma} \leq \frac{\tilde{x}-\mu}{\sigma}) = P(Z \leq \tilde{z})$ $P(Z \leq \tilde{z}) = P(X \leq \tilde{x}) = F(\tilde{x}) = \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{\tilde{x}} \exp(-\frac{1}{2} \left(\frac{x-\mu}{\sigma}\right)^2) dx$ $z = \frac{x-\mu}{\sigma} dx = \frac{1}{\sigma} dx = \frac{1}{2\pi} \int_{-\infty}^{\tilde{z}} \exp(-\frac{1}{2} z^2) dz$

Normal Distribution ●○○ Exercises Mo

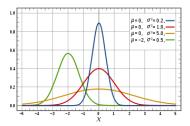
(日) (日) (日) (日) (日) (日) (日)

Monday

Basics

An RV X has a normal distribution with parameters μ and σ (X ~ $\mathcal{N}(\mu, \sigma)$), if the density is given by

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{1}{2}(\frac{x-\mu}{\sigma})^2\right)$$
$$x \in \mathbb{R}$$



Notice:

- *f* is symmetric around $x = \mu$
- f is maximal for $x = \mu$
- One can prove that $E(X) = \mu$, $V(X) = \sigma^2$

Theorem: $X \sim \mathcal{N}(\mu, \sigma)$ and $Z = \frac{X-\mu}{\sigma}$, then $Z \sim \mathcal{N}(0, 1)$ Proof: Let $\tilde{z} = \frac{\tilde{x}-\mu}{\sigma}$ Then $P(X \leq \tilde{x}) = P(\frac{X-\mu}{\sigma} \leq \frac{\tilde{x}-\mu}{\sigma}) = P(Z \leq \tilde{z})$ $P(Z \leq \tilde{z}) = P(X \leq \tilde{x}) = F(\tilde{x}) = \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{\tilde{x}} \exp(-\frac{1}{2} \left(\frac{x-\mu}{\sigma}\right)^2) dx$ $z = \frac{x-\mu}{\sigma}, dz = \frac{1}{\sigma} dx$ $\frac{1}{2\pi} \int_{-\infty}^{\tilde{z}} \exp(-\frac{1}{2} z^2) dz$ $f(\tilde{z}) = \frac{1}{\sqrt{2\pi}} \exp(-\frac{1}{2} \tilde{z}^2)$, thus $Z \sim \mathcal{N}(0, 1)$

Flavor of estimation problems	Exponential Distribution
	000

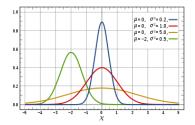
Normal Distribution ○●○ Exercises Monday

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Basics

If $X \sim \mathcal{N}(\mu, \sigma)$, then

- $f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{1}{2}(\frac{x-\mu}{\sigma})^2\right)$
- $E(X) = \mu$, $V(X) = \sigma^2$
- $X \sim \mathcal{N}(\mu, \sigma)$ and $Z = \frac{X \mu}{\sigma}$, then $Z \sim \mathcal{N}(0, 1)$



Flavor of estimation problems	Exponential Distribution
	000

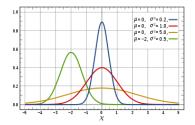
Normal Distribution ○●○ Exercises Monday

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Basics

If $X \sim \mathcal{N}(\mu, \sigma)$, then

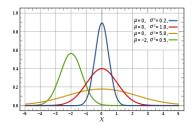
- $f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{1}{2}(\frac{x-\mu}{\sigma})^2\right)$
- $E(X) = \mu$, $V(X) = \sigma^2$
- $X \sim \mathcal{N}(\mu, \sigma)$ and $Z = \frac{X \mu}{\sigma}$, then $Z \sim \mathcal{N}(0, 1)$



Flavor of estimation problems	Exponential Distribution	Normal Distribution ○●○	Exercises	Monday
Basics				

If $X \sim \mathcal{N}(\mu, \sigma)$, then

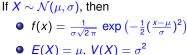
- $f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right)$
- $E(X) = \mu$, $V(X) = \sigma^2$
- $X \sim \mathcal{N}(\mu, \sigma)$ and $Z = \frac{\chi_{-\mu}}{\sigma}$, then $Z \sim \mathcal{N}(0, 1)$



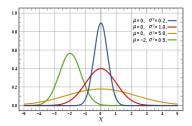
▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

• Table A3:
$$P(Z \le z) (Z \sim \mathcal{N}(0, 1))$$

Flavor of estimation problems	Exponential Distribution	Normal Distribution ○●○	Exercises	Monday
Basics				



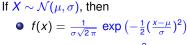
- $E(X) = \mu$, $V(X) = \sigma$ • $X \sim \mathcal{N}(\mu, \sigma)$ and $Z = \frac{X - \mu}{\sigma}$, then
- $X \sim \mathcal{N}(\mu, \sigma)$ and $Z = \frac{K \mu}{\sigma}$, then $Z \sim \mathcal{N}(0, 1)$



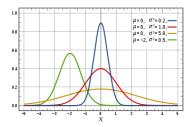
▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- Table A3: $P(Z \le z)$ $(Z \sim \mathcal{N}(0, 1))$
- If $X_1 \sim \mathcal{N}(\mu_1, \sigma_1)$ and $X_2 \sim \mathcal{N}(\mu_2, \sigma_2)$ and X_1 and X_2 are independent, then: $X_1 + X_2 \sim \mathcal{N}(\mu_1 + \mu_2, \sqrt{\sigma_1^2 + \sigma_2^2})$, $V(X_1 + X_2) = V(X_1) + V(X_2)$

Flavor of estimation problems	Exponential Distribution	Normal Distribution ○●○	Exercises	Monday
Basics				



- $E(X) = \mu$, $V(X) = \sigma^2$
- $X \sim \mathcal{N}(\mu, \sigma)$ and $Z = \frac{\chi_{-\mu}}{\sigma}$, then $Z \sim \mathcal{N}(0, 1)$



- Table A3: $P(Z \leq z)$ $(Z \sim \mathcal{N}(0, 1))$
- If $X_1 \sim \mathcal{N}(\mu_1, \sigma_1)$ and $X_2 \sim \mathcal{N}(\mu_2, \sigma_2)$ and X_1 and X_2 are independent, then: $X_1 + X_2 \sim \mathcal{N}(\mu_1 + \mu_2, \sqrt{\sigma_1^2 + \sigma_2^2})$, $V(X_1 + X_2) = V(X_1) + V(X_2)$

• If
$$X_i \sim \mathcal{N}(\mu, \sigma)$$
, $i = 1, ..., n$, $X_1, ..., X_n$ IID. Then
• $\sum_{i=1}^n X_i \sim \mathcal{N}(n \cdot \mu, \sqrt{n} \cdot \sigma)$
• $\overline{X} = \frac{1}{n} \sum_{i=1}^n X_i \sim \mathcal{N}(\mu, \sigma/\sqrt{n})$, $E(\overline{X}) = \mu$

Flavor of estimation problems	Exponential Distribution	Normal Distribution ○○●	Exercises	Monday
Examples				

Example 6(a)

The net weight of a pack of coffee (500 grams) is a normally distributed RV with parameters $\mu = 505$ g and $\sigma = 5$ g. What is the probability that the net weight of a pack is at least 500 g?

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Flavor of estimation problems	Exponential Distribution	Normal Distribution ○○●	Exercises	Monday
Examples				

Example 6(a)

The net weight of a pack of coffee (500 grams) is a normally distributed RV with parameters $\mu = 505$ g and $\sigma = 5$ g. What is the probability that the net weight of a pack is at least 500 g?

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

$$P(X \ge 500) = P(Z \ge rac{500 - \mu}{\sigma} = rac{500 - 505}{5} = -1)$$

Flavor of estimation problems	Exponential Distribution	Normal Distribution ○○●	Exercises	Monday
Examples				

Example 6(a)

The net weight of a pack of coffee (500 grams) is a normally distributed RV with parameters $\mu = 505$ g and $\sigma = 5$ g. What is the probability that the net weight of a pack is at least 500 g?

$$P(X \ge 500) = P(Z \ge \frac{500 - \mu}{\sigma} = \frac{500 - 505}{5} = -1)$$
$$= 1 - P(Z \le -1) \stackrel{TableA3}{=} 1 - 0.1587 = 0.8413$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Flavor of estimation problems	Exponential Distribution	Normal Distribution	Exercises	Monday
And now				

- Flavor of estimation problems ...
- 2 Exponential Distribution
 - Formulation
 - Expectation etc.
 - Application of the Exponential distribution
- 3 Normal Distribution
 - Basics
 - Examples

Flavor of estimation problems	Exponential Distribution	Normal Distribution	Exercises	Monday

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ●

Computing together:

- book (pp. 164-165): 5.51, 5.59, 5.65
- book (pp. 186-187): 6.5, 6.7, 6.13

	Exponential Distribution	Normal Distribution	Exercises	Monday
And now				

- Flavor of estimation problems ...
- 2 Exponential Distribution
 - Formulation
 - Expectation etc.
 - Application of the Exponential distribution
- 3 Normal Distribution
 - Basics
 - Examples

4 Exercises

Flavor of estimation problems	Exponential Distribution	Normal Distribution	Exercises	Monday

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

- Finishing up continuous PD's, introducing
 - Erlang distribution
 - Gamma-distribution
 - Chi-squared distribution
- Central limit theorem