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Basics

Formulation

If X1, X2, . . . , Xn are IID, Xi ∼ N (0, 1), then χ2 def
= X 2

1 + X 2
2 + . . .+ X 2

n

has a Gamma-distribution (Γ-distribution) with parameters α = n
2 and

λ = 1
2 (book: β = 2)

This distribution is also called a Chi-squared distribution with n degrees
of freedom

Notation χ2 ∼ χ2
n

book: Table A5 - X such that P(χ2 ≥ x) = α for several values of degree of
freedom n (book: n denoted by v ) and α
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Applications

Estimation of σ

Let X1, X2, . . . , X5 ∼ N (µ, σ) IDD with known µ and unknown σ

Then Zi = Xi−µ
σ
∼ N (0, 1)

⇒ Z 2
i = (Xi−µ)2

σ2 ∼ χ2
1

⇒ χ2 def
=
∑n

i=1 Z 2
i = 1

σ2

∑n
i=1(Xi − µ)2 ∼ χ2

n
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Examples

Example

Let X1, X2, . . . , Xn ∼ N (µ, σ) IDD with µ = 5 and unknown σ. The
realizations for X1, . . . , X5 are 3.5, 5.7, 1.2, 6.8, and 7.1. What values of σ
are reasonable?

Let χ2 def
= 1

σ2

∑5
i=1(Xi − µ)2

= 1
σ2 ((−1.5)2 + (0.7)2 + (−3.8)2 + (1.8)2 + (2.1)2) = 24.83

σ2

Table A5: P(χ2 ≥ 12.832) = 0.025 and P(χ2 ≥ 0.831) = 0.975

So (fill in the realization for χ2): P(0.831 ≤ 24.83
σ2 ≤ 12.832) =

0.975− 0.025 = 0.95⇔ P(σ2 ∈ [1.935, 29.88]) = 0.95
⇔ P(σ ∈ [1.391, 5.466]) = 0.95

Apparently reasonable values for σ are between 1.391 and 5.466. We call
[1.391, 5.466] a 95 % confidence interval for σ
Similarly, [1.935, 29.88] is a 95 % confidence interval for σ2
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Examples

Example 8: What if µ is unknown as well?

Data: X1, X2, . . . , Xn ∼ N (µ, σ) IDD with µ, σ unknown.
Some calculations show:

n∑
i=1

(xi − µ)2

=
n∑

i=1

((xi − x̄) + (x̄ − µ))2

=
n∑

i=1

(xi − x̄)2 + 2
n∑

i=1

(xi − x̄)︸ ︷︷ ︸
=0 for N (µ,σ)

(x̄ − µ) +
n∑

i=1

(x̄ − µ)2

=
n∑

i=1

(xi − x̄)2 + n · (x̄ − µ)2

Now, since s2 = 1
n−1

∑n
i=1(xi − x̄)2, we have

1
σ2

n∑
i=1

(xi − µ)2

︸ ︷︷ ︸
∼χ2

n

= (n−1)·s2

σ2 + (x̄−µ)2

σ2/n
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Example

Let X1, X2, . . . , Xn ∼ N (µ, σ) IDD with µ = 5 and unknown σ. The realizations
for X1, . . . , X5 are 3.5, 5.7, 1.2, 6.8, and 7.1. What values of σ are reasonable

Let χ2 def
= (n−1)s2

σ2 ∼ χ2
n−1 = χ2

4

x̄ = 1
5 (3.5 + 5.7 + 1.2 + 6.8 + 7.1) = 4.86

(n − 1)s2 =
∑n

i=1(xi − x̄)2 = 24.732
⇒ χ2 = 24.732

σ2

Construct a 95% confidence interval for σ :

Table A5: P(χ2 ≥ 11.143) = 0.025 and P(χ2 ≥ 0.484) = 0.975
⇒ P(0.484 ≤ 24.732/σ2 ≤ 11.143) = 0.95
⇒ P(24.732/11.143 ≤ σ2 ≤ 24.732/0.484) = 0.95

95% CI for σ2: [24.732/11.143, 24.732/0.484] = [0.220, 51.0999]
95% CI for σ: [1.490, 7.148]

Important!: These calculations use the fact that Xi ’s are normally distributed.
If it is not the case, we cannot use χ2-distributions!
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And now . . .

1 Chi-squared distribution (from last lecture)
Basics
Applications
Examples

2 Revision: Estimation Problems

3 Central Limit Theorem
Confidence interval (CI)
Estimation of µ and σ from the same data
Theorem
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X1, X2, . . . , Xn, IID N (µ, σ) (we sometimes talk about realization (“points”)
x1,. . . , xn of X1,. . . , Xn; it will be clear from context which of the two notions
we mean)
Sample mean:

Sample mean has realization x = 1
n

∑n
i=1 xi

E(X ) = µ (unbiased)

V (X ) = σ2

n (σX = σ√
n )

⇒ X ∼ N (µ, σ√
n )

Sample variance:
Sample variance S2 = 1

n−1

∑n
i=1(Xi − X )2 (realization

s2 = 1
n−1

∑n
i=1(xi − x̄)2)

E(S2) = σ2 (unbiased)
Previous lecture – estimation of σ2 or σ

µ known: χ2 def
=
∑n

i=1
(Xi−µ)

σ2 ∼ χ2
n (chi-squared distribution with n

degrees of freedom)⇒ calculate confidence interval (CI) for σ2

µ unknown: χ2 def
=
∑n

i=1
(Xi−X)

σ2 = (n−1)S2

σ2 ∼ χ2
n−1 (chi-squared

distribution with n degrees of freedom)⇒ calculate confidence interval
(CI) for σ2 and σ2 (book: Section 9.12)
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And now . . .

1 Chi-squared distribution (from last lecture)
Basics
Applications
Examples

2 Revision: Estimation Problems

3 Central Limit Theorem
Confidence interval (CI)
Estimation of µ and σ from the same data
Theorem



beamer-tu-logo

Chi-squared distribution (from last lecture) Revision: Estimation Problems Central Limit Theorem

Confidence interval (CI)

Estimation of µ

X1, X2, . . . , Xn ∼ N (µ, σ) IDD, with σ known. Define Z def
= X−µ

σ/
√

n ∼ N (0, 1)

P(−z ≤ Z̄ = X−µ
σ/
√

n ≤ z) = 1− α
Fill in the realization x̄ for X and make a few calculations:
P(x̄ − z·σ√

n ≤ µ ≤ x̄ + z·σ√
n ) = 1− α

Hence

(1− α)CI
or (1− α) · 100% CI

}
for µ ∈

[
x̄ − z · σ√

n
, x̄ +

z · σ√
n

]
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Confidence interval (CI)

Example 1

X1, . . . ,X5 ∼ N (µ, σ) IID
{x1, . . . , x5} = {3.5, 5.7, 1.2, 6.8, 7.1};

µ unknown, σ = 2
Calculate a 92 % CI for µ

x̄ = 4.86

Determine z such that P(Z ≤ z) = 0.04⇒ z = −1.75

P(−1.75 ≤ 4.86−µ
2/
√

5
≤ 1.75) = 0.92⇔

P(4.86− 1.75·2√
5
≤ µ ≤ 4.86 + 1.75·2√

5
) = 0.92

⇔ 92 % CI for µ :
[
4.86− 1.75·2√

5
, 4.86 + 1.75·2√

5

]
= [3.295, 6.425]
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[
4.86− 1.75·2√

5
, 4.86 + 1.75·2√

5

]
= [3.295, 6.425]
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Confidence interval (CI)

Example 2(from before)

X1, . . . ,X75 ∼ N (µ, σ) IID, σ = 0.0015, x̄ = 0.310 (realization of X )

Determine z such that P(Z ≤ z) = 0.025⇒ z = −1.96

P(−1.96 ≤ 0.310−µ
0.0015/

√
75
≤ 1.96) = 0.05

⇔ P(0.310− 1.96·0.0015√
75

≤ µ ≤ 0.310 + 1.96·0.0015√
75

) = 0.95

⇒ 95 % CI for µ : [0.3097, 0.3103]
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Estimation of µ and σ from the same data

Estimation of µ if σ is unknown

Natural statistics for µ : X1, . . . ,Xn ∼ N (µ, σ) IID

T = X−µ
S√

n
(use sample standard deviation instead of σ)

T = X−µ
S/
√

n = X−µ
σ/
√

n ·
σ
S

Let Z def
= X−µ

σ/
√

n ∼ N (0, 1), χ2 def
= (n−1)s2

σ2 ∼ χ2
n−1

Then: T = Z√
χ2/(n−1)

and is distributed according to the t-distribution

with n − 1 degrees of freedom

How to find P(T ≥ t)?

book – table A4: Values of t such that P(T ≥ t) = α - for several
α < 0.5 and v = ] degrees of freedom

Due to symmetry around t = 0 we have P(T ≤ −t) = P(T ≥ t) = α or
similarly: P(T ≤ −t) = 1− α
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Estimation of µ and σ from the same data

Example 1 (from before)

Let {x1, . . . , x5} = {3.5, 5.7, 1.2, 6.8, 7.1}. Suppose that σ is unknown,
Xi ∼ N (µ, σ). Calculate a 98.5% CI for µ.
From before:

x̄ = 4.86

(n − 1) · s2 = 24.732⇒ s =
√

24.732
4 = 2.487

T = X−µ
S/
√

n ∼ tn−1 = t4

Realization for T : 4.86−µ
2.487/

√
5

Then: P(T ≥ 1) = 0.0075⇒ t = 4.088 (table A4)

Hence: P(−4.088 ≤ 4.86−µ
2.487/

√
5
≤ 4.088) = 0.985

⇔ P(0.313 ≤ µ ≤ 9.407) = 0.985

Therefore: 98% CI for µ : [0.313, 9.407]
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Estimation of µ and σ from the same data

General formula

If σ is unknown:

1− α CI for µ
(1− α) · 100% CI for µ

}
:

[
x̄ − t · s√

n
, x̄ +

t · s√
n

]
,

where t can be found in table A4.

Example 2 (from before)

Given: X1, . . . ,X75 IID, Xi ∼ N (µ, σ), µ and σ unknown, x̄ = 0.310, let
s = 0.0028. Calculate a 90% CI for µ

T = x̄−µ
S/
√

n ∼ tn−1 ⇒ 0.310−µ
0.0028/

√
95
∼ t74 - not in the table, we approximate

by t60 (“pretty close”)

P(−1.671 ≤ 0.310−µ
0.0028/

√
75
≤ 1.671) = 0.90

⇒ P(0.3095 ≤ µ ≤ 0.3105) = 0.9

⇒ 90 % CI for µ : [0.3095, 0.3105]
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Example 2 (from before)

Given: X1, . . . ,X75 IID, Xi ∼ N (µ, σ), µ and σ unknown, x̄ = 0.310,
s = 0.0028. Calculate a 96% CI for σ

T = (n−1) S2

σ2 ∼ χ2
n−1

⇒ 74 (0.0028)2

σ2 ∼ χ2
74

No approximation in any table, χ2
30 is not even close to χ2

74
Note (from before): χ2 ∼ χ2

n⇒ E(χ2) = n, V (χ2) = 2 n
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Theorem

What if the random sample does not have a normal distribution?

Small sample size (book: n ≤ 30): We have a problem

Large sample size (book: n > 30): We have a very surprising solution

Central limit theorem

Let X1, . . . ,Xn be IID with unknown µ and σ.

Then E(X ) = µ, V (X ) = σ2

n , and, if n is big enough,

Z def
=

X − µ
σ/
√

n
approx∼ N (0, 1)

Book: Sections 8.4 (σ known), 9.4 (σ unknown)
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Central limit theorem (CLT)

Let X1, . . . ,Xn be IID with unknown µ and σ.

Then E(X ) = µ, V (X ) = σ2

n , and, if n is big enough,

Z def
=

X − µ
σ/
√

n
approx∼ N (0, 1)

Example 2 (from before)

Let X1, . . . ,X75 IID, suppose we do not know normality, µ, σ unknown

We know: x̄ = 0.310, s = 0.0028, n = 75

⇒ X−µ
σ/
√

n
approx∼ N (0, 1) according to CLT

⇒ Realization: 0.310−µ
0.0028/

√
75

⇒ 90 % CI for µ : P(−1.645 ≤ 0.310−µ
0.0028/

√
75
≤ 1.645) = 0.90

⇒ P(0.3095 ≤ µ ≤ 0.3105) = 0.90

⇒ 90 % CI for µ : [0.3095, 0.3105]
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Central limit theorem (CLT)

Let X1, . . . ,Xn be IID with unknown µ and σ.

Then E(X ) = µ, V (X ) = σ2

n , and, if n is big enough,

Z def
=

X − µ
σ/
√

n
≈∼ N (0, 1)

Remarks

Use T-distribution if you have enough information: i.e. normal
distribution and a not too large sample

χ2 def
= (n−1) s2

σ2 ∼ χ2
n−1 ⇒ V (χ2) = 2(n − 1)

⇒ V ( s2

σ2 ) = 1
(n−1)2 · V (χ2) = 2

n−1
n→∞→ 0, whereas E( s2

σ2 ) = n−1
n−1 = 1⇒

That is why we may replace σ by S.
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Z def
=

X − µ
σ/
√

n
≈∼ N (0, 1)

Remarks

Use T-distribution if you have enough information: i.e. normal
distribution and a not too large sample

χ2 def
= (n−1) s2

σ2 ∼ χ2
n−1 ⇒ V (χ2) = 2(n − 1)

⇒ V ( s2

σ2 ) = 1
(n−1)2 · V (χ2) = 2

n−1
n→∞→ 0, whereas E( s2

σ2 ) = n−1
n−1 = 1⇒

That is why we may replace σ by S.
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