Central Limit Theorem

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Lecture 15: Central Limit Theorem

Kateřina Staňková

Statistics (MAT1003)

May 15, 2012

Outline

Chi-squared distribution (from last lecture)

- Basics
- Applications
- Examples

2 Revision: Estimation Problems

- 3 Central Limit Theorem
 - Confidence interval (CI)
 - Estimation of μ and σ from the same data
 - Theorem

book: Sections 6.2-6.4,6.6

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

And now ...

Chi-squared distribution (from last lecture)

- Basics
- Applications
- Examples

2 Revision: Estimation Problems

- 3 Central Limit Theorem
 - Confidence interval (CI)
 - Estimation of μ and σ from the same data
 - Theorem

Basics

Formulation

Basics

Formulation

If
$$X_1, X_2, ..., X_n$$
 are IID, $X_i \sim \mathcal{N}(0, 1)$, then $\chi^2 \stackrel{\text{def}}{=} X_1^2 + X_2^2 + ... + X_n^2$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

Basics

Formulation

f
$$X_1, X_2, \ldots, X_n$$
 are IID, $X_i \sim \mathcal{N}(0, 1)$, then $\underline{\chi}^2 \stackrel{\text{def}}{=} X_1^2 + X_2^2 + \ldots + X_n^2$

• has a Gamma-distribution (Γ -distribution) with parameters $\alpha = \frac{n}{2}$ and $\lambda = \frac{1}{2}$ (book: $\beta = 2$)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Basics

Formulation

If
$$X_1, X_2, \ldots, X_n$$
 are IID, $X_i \sim \mathcal{N}(0, 1)$, then $\underline{\chi}^2 \stackrel{\mathsf{def}}{=} X_1^2 + X_2^2 + \ldots + X_n^2$

- has a Gamma-distribution (Γ -distribution) with parameters $\alpha = \frac{n}{2}$ and $\lambda = \frac{1}{2}$ (book: $\beta = 2$)
- This distribution is also called a Chi-squared distribution with *n* degrees of freedom

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Basics

Formulation

f
$$X_1, X_2, \ldots, X_n$$
 are IID, $X_i \sim \mathcal{N}(0, 1)$, then $\underline{\chi}^2 \stackrel{\mathsf{def}}{=} X_1^2 + X_2^2 + \ldots + X_n^2$

- has a Gamma-distribution (Γ -distribution) with parameters $\alpha = \frac{n}{2}$ and $\lambda = \frac{1}{2}$ (book: $\beta = 2$)
- This distribution is also called a Chi-squared distribution with n degrees of freedom

Notation $\underline{\chi}^2 \sim \chi_n^2$

Basics

Formulation

If
$$X_1, X_2, \ldots, X_n$$
 are IID, $X_i \sim \mathcal{N}(0, 1)$, then $\underline{\chi}^2 \stackrel{\mathsf{def}}{=} X_1^2 + X_2^2 + \ldots + X_n^2$

- has a Gamma-distribution (Γ -distribution) with parameters $\alpha = \frac{n}{2}$ and $\lambda = \frac{1}{2}$ (book: $\beta = 2$)
- This distribution is also called a Chi-squared distribution with *n* degrees of freedom

Notation $\underline{\chi}^2 \sim \chi_n^2$ book: Table A5 - *X* such that $P(\underline{\chi}^2 \ge x) = \alpha$ for several values of degree of freedom *n* (book: *n* denoted by \overline{v}) and α

Applications

Estimation of σ

Applications

Estimation of σ

Let $X_1, X_2, \ldots, X_5 \sim \mathcal{N}(\mu, \sigma)$ IDD with known μ and unknown σ

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = ● ● ●

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

Applications

Estimation of σ

Let $X_1, X_2, \ldots, X_5 \sim \mathcal{N}(\mu, \sigma)$ IDD with known μ and unknown σ Then $Z_i = \frac{X_i - \mu}{\sigma} \sim \mathcal{N}(0, 1)$

Applications

Estimation of σ

Let $X_1, X_2, \ldots, X_5 \sim \mathcal{N}(\mu, \sigma)$ IDD with known μ and unknown σ Then $Z_i = \frac{X_i - \mu}{\sigma} \sim \mathcal{N}(0, 1)$ $\Rightarrow Z_i^2 = \frac{(X_i - \mu)^2}{\sigma^2} \sim \chi_1^2$

◆□▶ ◆□▶ ◆ □▶ ◆ □ ◆ ○ ◆ ○ ◆ ○ ◆

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Applications

Estimation of σ

Let $X_1, X_2, \dots, X_5 \sim \mathcal{N}(\mu, \sigma)$ IDD with known μ and unknown σ Then $Z_i = \frac{X_i - \mu}{\sigma} \sim \mathcal{N}(0, 1)$ $\Rightarrow Z_i^2 = \frac{(X_i - \mu)^2}{\sigma^2} \sim \chi_1^2$ $\Rightarrow \underline{\chi}^2 \stackrel{\text{def}}{=} \sum_{i=1}^n Z_i^2 = \frac{1}{\sigma^2} \sum_{i=1}^n (X_i - \mu)^2 \sim \chi_n^2$

Example

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

Examples

Example

Let $X_1, X_2, \ldots, X_n \sim \mathcal{N}(\mu, \sigma)$ IDD with $\mu = 5$ and unknown σ . The realizations for X_1, \ldots, X_5 are 3.5, 5.7, 1.2, 6.8, and 7.1. What values of σ are reasonable?

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Examples

Example

Let $X_1, X_2, \ldots, X_n \sim \mathcal{N}(\mu, \sigma)$ IDD with $\mu = 5$ and unknown σ . The realizations for X_1, \ldots, X_5 are 3.5, 5.7, 1.2, 6.8, and 7.1. What values of σ are reasonable? Let $\underline{\chi}^2 \stackrel{\text{def}}{=} \frac{1}{\sigma^2} \sum_{i=1}^5 (X_i - \mu)^2$

Example

Let $X_1, X_2, ..., X_n \sim \mathcal{N}(\mu, \sigma)$ IDD with $\mu = 5$ and unknown σ . The realizations for $X_1, ..., X_5$ are 3.5, 5.7, 1.2, 6.8, and 7.1. What values of σ are reasonable? Let $\underline{\chi}^2 \stackrel{\text{def}}{=} \frac{1}{\sigma^2} \sum_{i=1}^5 (X_i - \mu)^2$ $= \frac{1}{\sigma^2} ((-1.5)^2 + (0.7)^2 + (-3.8)^2 + (1.8)^2 + (2.1)^2) = \frac{24.83}{\sigma^2}$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Examples

Example

Let $X_1, X_2, ..., X_n \sim \mathcal{N}(\mu, \sigma)$ IDD with $\mu = 5$ and unknown σ . The realizations for $X_1, ..., X_5$ are 3.5, 5.7, 1.2, 6.8, and 7.1. What values of σ are reasonable? Let $\underline{\chi}^2 \stackrel{\text{def}}{=} \frac{1}{\sigma^2} \sum_{i=1}^5 (X_i - \mu)^2$ $= \frac{1}{\sigma^2} ((-1.5)^2 + (0.7)^2 + (-3.8)^2 + (1.8)^2 + (2.1)^2) = \frac{24.83}{\sigma^2}$

• Table A5: $P(\underline{\chi}^2 \ge 12.832) = 0.025$ and $P(\underline{\chi}^2 \ge 0.831) = 0.975$

Example

Let $X_1, X_2, ..., X_n \sim \mathcal{N}(\mu, \sigma)$ IDD with $\mu = 5$ and unknown σ . The realizations for $X_1, ..., X_5$ are 3.5, 5.7, 1.2, 6.8, and 7.1. What values of σ are reasonable? Let $\underline{\chi}^2 \stackrel{\text{def}}{=} \frac{1}{\sigma^2} \sum_{i=1}^5 (X_i - \mu)^2$ $= \frac{1}{\sigma^2} ((-1.5)^2 + (0.7)^2 + (-3.8)^2 + (1.8)^2 + (2.1)^2) = \frac{24.83}{\sigma^2}$

• Table A5: $P(\underline{\chi}^2 \ge 12.832) = 0.025$ and $P(\underline{\chi}^2 \ge 0.831) = 0.975$

• So (fill in the realization for χ^2): $P(0.831 \le \frac{24.83}{\sigma^2} \le 12.832) = 0.975 - 0.025 = 0.95 \Leftrightarrow P(\sigma^2 \in [1.935, 29.88]) = 0.95$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Examples

Example

Let $X_1, X_2, ..., X_n \sim \mathcal{N}(\mu, \sigma)$ IDD with $\mu = 5$ and unknown σ . The realizations for $X_1, ..., X_5$ are 3.5, 5.7, 1.2, 6.8, and 7.1. What values of σ are reasonable? Let $\underline{\chi}^2 \stackrel{\text{def}}{=} \frac{1}{\sigma^2} \sum_{i=1}^5 (X_i - \mu)^2$ $= \frac{1}{\sigma^2} ((-1.5)^2 + (0.7)^2 + (-3.8)^2 + (1.8)^2 + (2.1)^2) = \frac{24.83}{\sigma^2}$

- Table A5: $P(\underline{\chi}^2 \ge 12.832) = 0.025$ and $P(\underline{\chi}^2 \ge 0.831) = 0.975$
- So (fill in the realization for χ^2): $P(0.831 \le \frac{24.83}{\sigma^2} \le 12.832) = 0.975 0.025 = 0.95 \Leftrightarrow P(\sigma^2 \in [1.935, 29.88]) = 0.95 \Leftrightarrow P(\sigma \in [1.391, 5.466]) = 0.95$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Examples

Example

Let $X_1, X_2, ..., X_n \sim \mathcal{N}(\mu, \sigma)$ IDD with $\mu = 5$ and unknown σ . The realizations for $X_1, ..., X_5$ are 3.5, 5.7, 1.2, 6.8, and 7.1. What values of σ are reasonable? Let $\underline{\chi}^2 \stackrel{\text{def}}{=} \frac{1}{\sigma^2} \sum_{i=1}^5 (X_i - \mu)^2$ $= \frac{1}{\sigma^2} ((-1.5)^2 + (0.7)^2 + (-3.8)^2 + (1.8)^2 + (2.1)^2) = \frac{24.83}{\sigma^2}$ • Table A5: $P(\chi^2 \ge 12.832) = 0.025$ and $P(\chi^2 \ge 0.831) = 0.975$

• So (fill in the realization for χ^2): $P(0.831 \le \frac{24.83}{\sigma^2} \le 12.832) = 0.975 - 0.025 = 0.95 \Leftrightarrow P(\sigma^2 \in [1.935, 29.88]) = 0.95 \Leftrightarrow P(\sigma \in [1.391, 5.466]) = 0.95$

Apparently reasonable values for σ are between 1.391 and 5.466. We call [1.391, 5.466] a 95 % confidence interval for σ

Example

Let $X_1, X_2, ..., X_n \sim \mathcal{N}(\mu, \sigma)$ IDD with $\mu = 5$ and unknown σ . The realizations for $X_1, ..., X_5$ are 3.5, 5.7, 1.2, 6.8, and 7.1. What values of σ are reasonable? Let $\underline{\chi}^2 \stackrel{\text{def}}{=} \frac{1}{\sigma^2} \sum_{i=1}^5 (X_i - \mu)^2$ $= \frac{1}{\sigma^2} ((-1.5)^2 + (0.7)^2 + (-3.8)^2 + (1.8)^2 + (2.1)^2) = \frac{24.83}{\sigma^2}$ • Table A5: $P(\chi^2 \ge 12.832) = 0.025$ and $P(\chi^2 \ge 0.831) = 0.975$

• So (fill in the realization for χ^2): $P(0.831 \le \frac{24.83}{\sigma^2} \le 12.832) = 0.975 - 0.025 = 0.95 \Leftrightarrow P(\sigma^2 \in [1.935, 29.88]) = 0.95 \Leftrightarrow P(\sigma \in [1.391, 5.466]) = 0.95$

Apparently reasonable values for σ are between 1.391 and 5.466. We call [1.391, 5.466] a 95 % confidence interval for σ Similarly, [1.935, 29.88] is a 95 % confidence interval for σ^2

Example 8: What if μ is unknown as well?

Example 8: What if μ is unknown as well?

Data: $X_1, X_2, \ldots, X_n \sim \mathcal{N}(\mu, \sigma)$ IDD with μ, σ unknown.

Example 8: What if μ is unknown as well?

Data: $X_1, X_2, \ldots, X_n \sim \mathcal{N}(\mu, \sigma)$ IDD with μ, σ unknown. Some calculations show:

$$\sum_{i=1}^n (x_i - \mu)^2$$

Example 8: What if μ is unknown as well?

Data: $X_1, X_2, \ldots, X_n \sim \mathcal{N}(\mu, \sigma)$ IDD with μ, σ unknown. Some calculations show:

$$\sum_{i=1}^{n} (x_i - \mu)^2 = \sum_{i=1}^{n} ((x_i - \bar{x}) + (\bar{x} - \mu))^2$$

Example 8: What if μ is unknown as well?

Data: $X_1, X_2, \ldots, X_n \sim \mathcal{N}(\mu, \sigma)$ IDD with μ, σ unknown. Some calculations show:

$$\sum_{i=1}^{n} (x_i - \mu)^2 = \sum_{i=1}^{n} ((x_i - \bar{x}) + (\bar{x} - \mu))^2$$
$$= \sum_{i=1}^{n} (x_i - \bar{x})^2 + 2 \underbrace{\sum_{i=1}^{n} (x_i - \bar{x})}_{=0 \text{ for } \mathcal{N}(\mu, \sigma)} (\bar{x} - \mu) + \sum_{i=1}^{n} (\bar{x} - \mu)^2$$

00

Example 8: What if μ is unknown as well?

Data: $X_1, X_2, \ldots, X_n \sim \mathcal{N}(\mu, \sigma)$ IDD with μ, σ unknown. Some calculations show:

$$\sum_{i=1}^{n} (x_i - \mu)^2 = \sum_{i=1}^{n} ((x_i - \bar{x}) + (\bar{x} - \mu))^2$$

=
$$\sum_{i=1}^{n} (x_i - \bar{x})^2 + 2 \underbrace{\sum_{i=1}^{n} (x_i - \bar{x})}_{=0 \text{ for } \mathcal{N}(\mu, \sigma)} (\bar{x} - \mu) + \sum_{i=1}^{n} (\bar{x} - \mu)^2$$

=
$$\sum_{i=1}^{n} (x_i - \bar{x})^2 + n \cdot (\bar{x} - \mu)^2$$

00

Example 8: What if μ is unknown as well?

Data: $X_1, X_2, \ldots, X_n \sim \mathcal{N}(\mu, \sigma)$ IDD with μ, σ unknown. Some calculations show:

$$\sum_{i=1}^{n} (x_i - \mu)^2 = \sum_{i=1}^{n} ((x_i - \bar{x}) + (\bar{x} - \mu))^2$$

=
$$\sum_{i=1}^{n} (x_i - \bar{x})^2 + 2 \underbrace{\sum_{i=1}^{n} (x_i - \bar{x})}_{=0 \text{ for } \mathcal{N}(\mu, \sigma)} (\bar{x} - \mu) + \sum_{i=1}^{n} (\bar{x} - \mu)^2$$

=
$$\sum_{i=1}^{n} (x_i - \bar{x})^2 + n \cdot (\bar{x} - \mu)^2$$

Now, since $s^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \bar{x})^2$, we have

Example 8: What if μ **is unknown as well?**

Data: $X_1, X_2, \ldots, X_n \sim \mathcal{N}(\mu, \sigma)$ IDD with μ, σ unknown. Some calculations show:

$$\sum_{i=1}^{n} (x_i - \mu)^2 = \sum_{i=1}^{n} ((x_i - \bar{x}) + (\bar{x} - \mu))^2$$

=
$$\sum_{i=1}^{n} (x_i - \bar{x})^2 + 2 \underbrace{\sum_{i=1}^{n} (x_i - \bar{x})}_{=0 \text{ for } \mathcal{N}(\mu, \sigma)} (\bar{x} - \mu) + \sum_{i=1}^{n} (\bar{x} - \mu)^2$$

=
$$\sum_{i=1}^{n} (x_i - \bar{x})^2 + n \cdot (\bar{x} - \mu)^2$$

Now, since $s^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \bar{x})^2$, we have

•
$$\underbrace{\frac{1}{\sigma^2} \sum_{i=1}^n (X_i - \mu)^2}_{\sim \chi_n^2} = \frac{(n-1) \cdot s^2}{\sigma^2} + \frac{(\bar{x} - \mu)^2}{\sigma^2/n}$$

Example 8: What if μ is unknown as well?

Now, since $s^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2$, we have

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ●

Example 8: What if μ is unknown as well?

Now, since
$$s^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2$$
, we have

•
$$\underbrace{\frac{1}{\sigma^2}\sum_{i=1}^n (X_i - \mu)^2}_{\sim \chi_n^2} = \frac{(n-1)\cdot s^2}{\sigma^2} + \frac{(\overline{X} - \mu)^2}{\sigma^2/n}$$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ●

Example 8: What if μ is unknown as well?

Now, since
$$s^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2$$
, we have

•
$$\underbrace{\frac{1}{\sigma^2} \sum_{i=1}^n (X_i - \mu)^2}_{\sim \chi_n^2} = \frac{(n-1) \cdot s^2}{\sigma^2} + \frac{(\overline{X} - \mu)^2}{\sigma^2/n}$$
$$\Rightarrow \overline{X} = \frac{1}{n} \sum_{i=1}^n X_i \sim \mathcal{N}(\mu, \frac{\sigma}{\sqrt{n}})$$

▲□▶▲□▶▲□▶▲□▶ ▲□ ● ● ●

Example 8: What if μ is unknown as well?

Now, since
$$s^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2$$
, we have

•
$$\underbrace{\frac{1}{\sigma^2} \sum_{i=1}^n (X_i - \mu)^2}_{\sim \chi_n^2} = \frac{(n-1) \cdot s^2}{\sigma^2} + \frac{(\overline{X} - \mu)^2}{\sigma^2/n}}_{\approx Z_n^2}$$
$$\Rightarrow \overline{X} = \frac{1}{n} \sum_{i=1}^n X_i \sim \mathcal{N}(\mu, \frac{\sigma}{\sqrt{n}})$$
$$\Rightarrow Z = \frac{\overline{X} - \mu}{\sigma/\sqrt{n}} \sim \mathcal{N}(0, 1)$$

Example 8: What if μ is unknown as well?

Now, since
$$s^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2$$
, we have

•
$$\underbrace{\frac{1}{\sigma^2} \sum_{i=1}^n (X_i - \mu)^2}_{\sim \chi_n^2} = \frac{(n-1) \cdot s^2}{\sigma^2} + \frac{(\overline{X} - \mu)^2}{\sigma^2/n}}_{\approx \chi_n^2}$$

$$\Rightarrow \overline{X} = \frac{1}{n} \sum_{i=1}^n X_i \sim \mathcal{N}(\mu, \frac{\sigma}{\sqrt{n}})$$

$$\Rightarrow Z = \frac{\overline{X} - \mu}{\sigma/\sqrt{n}} \sim \mathcal{N}(0, 1)$$

$$\Rightarrow \frac{(\overline{X} - \mu)^2}{\sigma^2/n} = \left(\frac{\overline{X} - \mu}{\sigma/\sqrt{n}}\right)^2 \sim \chi_1^2$$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ●

n

Examples

Example 8: What if μ is unknown as well?

Now, since
$$s^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2$$
, we have

•
$$\underbrace{\frac{1}{\sigma^2} \sum_{i=1}^n (X_i - \mu)^2}_{\sim \chi_n^2} = \frac{(n-1) \cdot s^2}{\sigma^2} + \frac{(\overline{X} - \mu)^2}{\sigma^2/n}$$

$$\Rightarrow \overline{X} = \frac{1}{n} \sum_{i=1}^n X_i \sim \mathcal{N}(\mu, \frac{\sigma}{\sqrt{n}})$$

$$\Rightarrow Z = \frac{\overline{X} - \mu}{\sqrt{\sqrt{n}}} \sim \mathcal{N}(0, 1)$$

$$\Rightarrow \frac{(\overline{X} - \mu)^2}{\sigma^2/n} = \left(\frac{\overline{X} - \mu}{\sigma/\sqrt{n}}\right)^2 \sim \chi_1^2$$

$$\Rightarrow \text{ The statistics } \underline{\chi}^2 \stackrel{\text{def}}{=} \frac{(n-1)s^2}{\sigma^2} = \sum_{i=1}^n \frac{(X_i - \overline{X})^2}{\sigma^2} \sim \chi_{n-1}^2$$

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ●

Example

Example

Let $X_1, X_2, \ldots, X_n \sim \mathcal{N}(\mu, \sigma)$ IDD with $\mu = 5$ and unknown σ . The realizations for X_1, \ldots, X_5 are 3.5, 5.7, 1.2, 6.8, and 7.1. What values of σ are reasonable

Example

Let $X_1, X_2, \ldots, X_n \sim \mathcal{N}(\mu, \sigma)$ IDD with $\mu = 5$ and unknown σ . The realizations for X_1, \ldots, X_5 are 3.5, 5.7, 1.2, 6.8, and 7.1. What values of σ are reasonable Let $\underline{\chi}^2 \stackrel{\text{def}}{=} \frac{(n-1)s^2}{\sigma^2} \sim \chi^2_{n-1} = \chi^2_4$

Example

Let $X_1, X_2, ..., X_n \sim \mathcal{N}(\mu, \sigma)$ IDD with $\mu = 5$ and unknown σ . The realizations for $X_1, ..., X_5$ are 3.5, 5.7, 1.2, 6.8, and 7.1. What values of σ are reasonable Let $\underline{\chi}^2 \stackrel{\text{def}}{=} \frac{(n-1)s^2}{\sigma^2} \sim \chi^2_{n-1} = \chi^2_4$ $\overline{x} = \frac{1}{5}(3.5 + 5.7 + 1.2 + 6.8 + 7.1) = 4.86$

Example

Example

Example

Let $X_1, X_2, ..., X_n \sim \mathcal{N}(\mu, \sigma)$ IDD with $\mu = 5$ and unknown σ . The realizations for $X_1, ..., X_5$ are 3.5, 5.7, 1.2, 6.8, and 7.1. What values of σ are reasonable Let $\underline{\chi}^2 \stackrel{\text{def}}{=} \frac{(n-1)s^2}{\sigma^2} \sim \chi^2_{n-1} = \chi^2_4$ $\overline{x} = \frac{1}{5}(3.5 + 5.7 + 1.2 + 6.8 + 7.1) = 4.86$ $(n-1)s^2 = \sum_{i=1}^n (x_i - \overline{x})^2 = 24.732$ $\Rightarrow \underline{\chi}^2 = \frac{24.732}{\sigma^2}$

Construct a 95% confidence interval for σ :

Example

- Construct a 95% confidence interval for σ :
- Table A5: $P(\chi^2 \ge 11.143) = 0.025$ and $P(\chi^2 \ge 0.484) = 0.975$

Example

- Construct a 95% confidence interval for σ :
- Table A5: $P(\underline{\chi}^2 \ge 11.143) = 0.025$ and $P(\underline{\chi}^2 \ge 0.484) = 0.975$ $\Rightarrow P(0.484 \le 24.732/\sigma^2 \le 11.143) = 0.95$

Example

- Construct a 95% confidence interval for σ :
- Table A5: $P(\underline{\chi}^2 \ge 11.143) = 0.025$ and $P(\underline{\chi}^2 \ge 0.484) = 0.975$ $\Rightarrow P(0.484 \le 24.732/\sigma^2 \le 11.143) = 0.95$ $\Rightarrow P(24.732/11.143 \le \sigma^2 \le 24.732/0.484) = 0.95$

Example

Let $X_1, X_2, ..., X_n \sim \mathcal{N}(\mu, \sigma)$ IDD with $\mu = 5$ and unknown σ . The realizations for $X_1, ..., X_5$ are 3.5, 5.7, 1.2, 6.8, and 7.1. What values of σ are reasonable Let $\underline{\chi}^2 \stackrel{\text{def}}{=} \frac{(n-1)s^2}{\sigma^2} \sim \chi^2_{n-1} = \chi^2_4$ $\overline{x} = \frac{1}{5}(3.5 + 5.7 + 1.2 + 6.8 + 7.1) = 4.86$ $(n-1)s^2 = \sum_{i=1}^n (x_i - \overline{x})^2 = 24.732$ $\Rightarrow \underline{\chi}^2 = \frac{24.732}{\sigma^2}$

Construct a 95% confidence interval for σ :

• Table A5: $P(\underline{\chi}^2 \ge 11.143) = 0.025$ and $P(\underline{\chi}^2 \ge 0.484) = 0.975$ $\Rightarrow P(0.484 \le 24.732/\sigma^2 \le 11.143) = 0.95$ $\Rightarrow P(24.732/11.143 \le \sigma^2 \le 24.732/0.484) = 0.95$

95% CI for σ^2 : [24.732/11.143, 24.732/0.484] = [0.220, 51.0999]

Example

Let $X_1, X_2, ..., X_n \sim \mathcal{N}(\mu, \sigma)$ IDD with $\mu = 5$ and unknown σ . The realizations for $X_1, ..., X_5$ are 3.5, 5.7, 1.2, 6.8, and 7.1. What values of σ are reasonable Let $\underline{\chi}^2 \stackrel{\text{def}}{=} \frac{(n-1)s^2}{\sigma^2} \sim \chi^2_{n-1} = \chi^2_4$ $\overline{x} = \frac{1}{5}(3.5 + 5.7 + 1.2 + 6.8 + 7.1) = 4.86$ $(n-1)s^2 = \sum_{i=1}^n (x_i - \overline{x})^2 = 24.732$ $\Rightarrow \underline{\chi}^2 = \frac{24.732}{\sigma^2}$

Construct a 95% confidence interval for σ :

• Table A5: $P(\underline{\chi}^2 \ge 11.143) = 0.025$ and $P(\underline{\chi}^2 \ge 0.484) = 0.975$ $\Rightarrow P(0.484 \le 24.732/\sigma^2 \le 11.143) = 0.95$ $\Rightarrow P(24.732/11.143 \le \sigma^2 \le 24.732/0.484) = 0.95$

95% CI for σ^2 : [24.732/11.143, 24.732/0.484] = [0.220, 51.0999] 95% CI for σ : [1.490, 7.148]

Example

Let $X_1, X_2, ..., X_n \sim \mathcal{N}(\mu, \sigma)$ IDD with $\mu = 5$ and unknown σ . The realizations for $X_1, ..., X_5$ are 3.5, 5.7, 1.2, 6.8, and 7.1. What values of σ are reasonable Let $\underline{\chi}^2 \stackrel{\text{def}}{=} \frac{(n-1)s^2}{\sigma^2} \sim \chi^2_{n-1} = \chi^2_4$ $\overline{x} = \frac{1}{5}(3.5 + 5.7 + 1.2 + 6.8 + 7.1) = 4.86$ $(n-1)s^2 = \sum_{i=1}^n (x_i - \overline{x})^2 = 24.732$ $\Rightarrow \underline{\chi}^2 = \frac{24.732}{\sigma^2}$

Construct a 95% confidence interval for σ :

• Table A5: $P(\underline{\chi}^2 \ge 11.143) = 0.025$ and $P(\underline{\chi}^2 \ge 0.484) = 0.975$ $\Rightarrow P(0.484 \le 24.732/\sigma^2 \le 11.143) = 0.95$ $\Rightarrow P(24.732/11.143 \le \sigma^2 \le 24.732/0.484) = 0.95$

95% CI for σ^2 : [24.732/11.143, 24.732/0.484] = [0.220, 51.0999] 95% CI for σ : [1.490, 7.148] Important!: These calculations use the fact that X_i 's are normally distributed. If it is not the case, we cannot use χ^2 -distributions!

Central Limit Theorem

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

And now ...

Chi-squared distribution (from last lecture)

- Basics
- Applications
- Examples

2 Revision: Estimation Problems

Central Limit Theorem

- Confidence interval (CI)
- Estimation of μ and σ from the same data
- Theorem

$$X_1, X_2, \ldots, X_n$$
, IID $\mathcal{N}(\mu, \sigma)$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

 $X_1, X_2, ..., X_n$, IID $\mathcal{N}(\mu, \sigma)$ (we sometimes talk about realization ("points") $x_1, ..., x_n$ of $X_1, ..., X_n$; it will be clear from context which of the two notions we mean) Sample mean:

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

 X_1, X_2, \ldots, X_n , IID $\mathcal{N}(\mu, \sigma)$ (we sometimes talk about realization ("points") x_1, \ldots, x_n of X_1, \ldots, X_n ; it will be clear from context which of the two notions we mean)

Sample mean:

• Sample mean has realization $\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$

 $X_1, X_2, ..., X_n$, IID $\mathcal{N}(\mu, \sigma)$ (we sometimes talk about realization ("points") $x_1, ..., x_n$ of $X_1, ..., X_n$; it will be clear from context which of the two notions we mean)

Sample mean:

• Sample mean has realization $\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$

• $E(\overline{X}) = \mu$ (unbiased)

 $X_1, X_2, ..., X_n$, IID $\mathcal{N}(\mu, \sigma)$ (we sometimes talk about realization ("points") $x_1, ..., x_n$ of $X_1, ..., X_n$; it will be clear from context which of the two notions we mean)

Sample mean:

- Sample mean has realization $\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$
- $E(\overline{X}) = \mu$ (unbiased)

•
$$V(\overline{X}) = \frac{\sigma^2}{n} (\sigma_{\overline{X}} = \frac{\sigma}{\sqrt{n}})$$

 $X_1, X_2, ..., X_n$, IID $\mathcal{N}(\mu, \sigma)$ (we sometimes talk about realization ("points") $x_1, ..., x_n$ of $X_1, ..., X_n$; it will be clear from context which of the two notions we mean)

Sample mean:

- Sample mean has realization $\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$
- $E(\overline{X}) = \mu$ (unbiased)

•
$$V(\overline{X}) = \frac{\sigma^2}{n} (\sigma_{\overline{X}} = \frac{\sigma}{\sqrt{n}})$$

$$\Rightarrow \overline{X} \sim \mathcal{N}(\mu, \frac{\sigma}{\sqrt{n}})$$

(日) (日) (日) (日) (日) (日) (日)

 $X_1, X_2, ..., X_n$, IID $\mathcal{N}(\mu, \sigma)$ (we sometimes talk about realization ("points") $x_1, ..., x_n$ of $X_1, ..., X_n$; it will be clear from context which of the two notions we mean)

Sample mean:

- Sample mean has realization $\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$
- $E(\overline{X}) = \mu$ (unbiased)
- $V(\overline{X}) = \frac{\sigma^2}{n} (\sigma_{\overline{X}} = \frac{\sigma}{\sqrt{n}})$
- $\Rightarrow \overline{X} \sim \mathcal{N}(\mu, \frac{\sigma}{\sqrt{n}})$

Sample variance:

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

 $X_1, X_2, ..., X_n$, IID $\mathcal{N}(\mu, \sigma)$ (we sometimes talk about realization ("points") $x_1, ..., x_n$ of $X_1, ..., X_n$; it will be clear from context which of the two notions we mean)

Sample mean:

- Sample mean has realization $\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$
- $E(\overline{X}) = \mu$ (unbiased)
- $V(\overline{X}) = \frac{\sigma^2}{n} (\sigma_{\overline{X}} = \frac{\sigma}{\sqrt{n}})$
- $\Rightarrow \overline{X} \sim \mathcal{N}(\mu, \frac{\sigma}{\sqrt{n}})$

Sample variance:

• Sample variance $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2$ (realization $s^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2$)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

 $X_1, X_2, ..., X_n$, IID $\mathcal{N}(\mu, \sigma)$ (we sometimes talk about realization ("points") $x_1, ..., x_n$ of $X_1, ..., X_n$; it will be clear from context which of the two notions we mean)

Sample mean:

- Sample mean has realization $\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$
- $E(\overline{X}) = \mu$ (unbiased)
- $V(\overline{X}) = \frac{\sigma^2}{n} (\sigma_{\overline{X}} = \frac{\sigma}{\sqrt{n}})$
- $\Rightarrow \overline{X} \sim \mathcal{N}(\mu, \frac{\sigma}{\sqrt{n}})$

Sample variance:

- Sample variance $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i \overline{X})^2$ (realization $s^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i \overline{X})^2$)
- $E(S^2) = \sigma^2$ (unbiased)

(日) (日) (日) (日) (日) (日) (日)

 $X_1, X_2, ..., X_n$, IID $\mathcal{N}(\mu, \sigma)$ (we sometimes talk about realization ("points") $x_1, ..., x_n$ of $X_1, ..., X_n$; it will be clear from context which of the two notions we mean)

Sample mean:

- Sample mean has realization $\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$
- $E(\overline{X}) = \mu$ (unbiased)
- $V(\overline{X}) = \frac{\sigma^2}{n} (\sigma_{\overline{X}} = \frac{\sigma}{\sqrt{n}})$
- $\Rightarrow \overline{X} \sim \mathcal{N}(\mu, \frac{\sigma}{\sqrt{n}})$

Sample variance:

- Sample variance $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i \overline{X})^2$ (realization $s^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i \overline{x})^2$)
- $E(S^2) = \sigma^2$ (unbiased)

Previous lecture – estimation of σ^2 or σ

 $X_1, X_2, ..., X_n$, IID $\mathcal{N}(\mu, \sigma)$ (we sometimes talk about realization ("points") $x_1, ..., x_n$ of $X_1, ..., X_n$; it will be clear from context which of the two notions we mean)

Sample mean:

- Sample mean has realization $\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$
- $E(\overline{X}) = \mu$ (unbiased)
- $V(\overline{X}) = \frac{\sigma^2}{n} (\sigma_{\overline{X}} = \frac{\sigma}{\sqrt{n}})$
- $\Rightarrow \overline{X} \sim \mathcal{N}(\mu, \frac{\sigma}{\sqrt{n}})$

Sample variance:

• Sample variance $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2$ (realization $s^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \overline{x})^2$)

• $E(S^2) = \sigma^2$ (unbiased)

Previous lecture – estimation of σ^2 or σ

• μ known: $\underline{\chi}^2 \stackrel{\text{def}}{=} \sum_{i=1}^n \frac{(X_i - \mu)}{\sigma^2} \sim \chi_n^2$ (chi-squared distribution with *n* degrees of freedom) \Rightarrow calculate confidence interval (CI) for σ^2

 $X_1, X_2, ..., X_n$, IID $\mathcal{N}(\mu, \sigma)$ (we sometimes talk about realization ("points") $x_1, ..., x_n$ of $X_1, ..., X_n$; it will be clear from context which of the two notions we mean)

Sample mean:

- Sample mean has realization $\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$
- $E(\overline{X}) = \mu$ (unbiased)
- $V(\overline{X}) = \frac{\sigma^2}{n} (\sigma_{\overline{X}} = \frac{\sigma}{\sqrt{n}})$
- $\Rightarrow \overline{X} \sim \mathcal{N}(\mu, \frac{\sigma}{\sqrt{n}})$

Sample variance:

• Sample variance $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2$ (realization $s^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \overline{X})^2$)

• $E(S^2) = \sigma^2$ (unbiased)

Previous lecture – estimation of σ^2 or σ

- μ known: $\underline{\chi}^2 \stackrel{\text{def}}{=} \sum_{i=1}^n \frac{(X_i \mu)}{\sigma^2} \sim \chi_n^2$ (chi-squared distribution with *n* degrees of freedom) \Rightarrow calculate confidence interval (CI) for σ^2
- μ unknown: $\chi^2 \stackrel{\text{def}}{=} \sum_{i=1}^n \frac{(X_i \overline{X})}{\sigma^2} = \frac{(n-1)S^2}{\sigma^2} \sim \chi^2_{n-1}$ (chi-squared distribution with *n* degrees of freedom) \Rightarrow calculate confidence interval (CI) for σ^2 and σ^2 (book: Section 9.12)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

And now ...

Chi-squared distribution (from last lecture)

- Basics
- Applications
- Examples

2 Revision: Estimation Problems

3 Central Limit Theorem

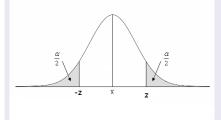
- Confidence interval (CI)
- Estimation of μ and σ from the same data
- Theorem

Revision: Estimation Problems

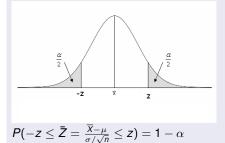
Confidence interval (CI)

$$X_1, X_2, \ldots, X_n \sim \mathcal{N}(\mu, \sigma)$$
 IDD, with σ known. Define $Z \stackrel{\text{def}}{=} \frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \sim \mathcal{N}(0, 1)$

$$X_1, X_2, \ldots, X_n \sim \mathcal{N}(\mu, \sigma)$$
 IDD, with σ known. Define $Z \stackrel{\text{def}}{=} \frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \sim \mathcal{N}(0, 1)$

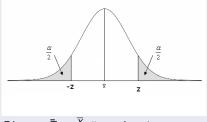


$$X_1, X_2, \ldots, X_n \sim \mathcal{N}(\mu, \sigma)$$
 IDD, with σ known. Define $Z \stackrel{\text{def}}{=} \frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \sim \mathcal{N}(0, 1)$



Estimation of μ

$$X_1, X_2, \ldots, X_n \sim \mathcal{N}(\mu, \sigma)$$
 IDD, with σ known. Define $Z \stackrel{\text{def}}{=} \frac{\overline{X} - \mu}{\sigma/\sqrt{n}} \sim \mathcal{N}(0, 1)$

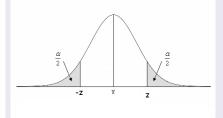


$$P(-z \leq \overline{Z} = \frac{X-\mu}{\sigma/\sqrt{n}} \leq z) = 1 - \alpha$$

Fill in the realization \bar{x} for \overline{X} and make a few calculations:

Estimation of μ

$$X_1, X_2, \ldots, X_n \sim \mathcal{N}(\mu, \sigma)$$
 IDD, with σ known. Define $Z \stackrel{\text{def}}{=} \frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \sim \mathcal{N}(0, 1)$

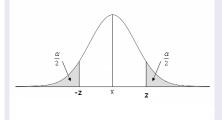


$$P(-z \leq \overline{Z} = \frac{\overline{X} - \mu}{\sigma/\sqrt{n}} \leq z) = 1 - \alpha$$

Fill in the realization \bar{x} for \overline{X} and make a few calculations: $P(\bar{x} - \frac{z \cdot \sigma}{\sqrt{n}} \le \mu \le \bar{x} + \frac{z \cdot \sigma}{\sqrt{n}}) = 1 - \alpha$

Estimation of μ

$$X_1, X_2, \ldots, X_n \sim \mathcal{N}(\mu, \sigma)$$
 IDD, with σ known. Define $Z \stackrel{\text{def}}{=} \frac{\overline{X} - \mu}{\sigma/\sqrt{n}} \sim \mathcal{N}(0, 1)$



$$P(-z \leq \overline{Z} = \frac{\overline{X} - \mu}{\sigma/\sqrt{n}} \leq z) = 1 - \alpha$$

Fill in the realization \bar{x} for \overline{X} and make a few calculations: $P(\bar{x} - \frac{z \cdot \sigma}{\sqrt{n}} \le \mu \le \bar{x} + \frac{z \cdot \sigma}{\sqrt{n}}) = 1 - \alpha$

Hence

$$\begin{array}{c} (1-\alpha)\mathrm{CI} \\ \text{or } (1-\alpha) \cdot 100\% \,\mathrm{CI} \end{array} \right\} \quad \text{for} \quad \mu \in \left[\bar{x} - \frac{z \cdot \sigma}{\sqrt{n}}, \bar{x} + \frac{z \cdot \sigma}{\sqrt{n}} \right]$$

an

Revision: Estimation Problems

Central Limit Theorem

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

Confidence interval (CI)

Confidence interval (CI)

Example 1

 $X_1, \dots, X_5 \sim \mathcal{N}(\mu, \sigma)$ IID $\{x_1, \dots, x_5\} = \{3.5, 5.7, 1.2, 6.8, 7.1\}; \mu$ unknown, $\sigma = 2$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ●

Confidence interval (CI)

Example 1

 $X_1, \ldots, X_5 \sim \mathcal{N}(\mu, \sigma)$ IID $\{x_1, \ldots, x_5\} = \{3.5, 5.7, 1.2, 6.8, 7.1\}; \mu$ unknown, $\sigma = 2$ Calculate a 92 % CI for μ

▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > ● ④ < @

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Confidence interval (CI)

Example 1

 $X_1, \dots, X_5 \sim \mathcal{N}(\mu, \sigma)$ IID $\{x_1, \dots, x_5\} = \{3.5, 5.7, 1.2, 6.8, 7.1\}; \mu$ unknown, $\sigma = 2$ Calculate a 92 % CI for μ

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Confidence interval (CI)

Example 1

 $X_1, \ldots, X_5 \sim \mathcal{N}(\mu, \sigma)$ IID $\{x_1, \ldots, x_5\} = \{3.5, 5.7, 1.2, 6.8, 7.1\}; \mu$ unknown, $\sigma = 2$ Calculate a 92 % CI for μ

- *x* = 4.86
- Determine z such that $P(Z \le z) = 0.04 \Rightarrow z = -1.75$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Confidence interval (CI)

Example 1

 $X_1, \ldots, X_5 \sim \mathcal{N}(\mu, \sigma)$ IID $\{x_1, \ldots, x_5\} = \{3.5, 5.7, 1.2, 6.8, 7.1\}; \mu$ unknown, $\sigma = 2$ Calculate a 92 % CI for μ

- x̄ = 4.86
- Determine *z* such that $P(Z \le z) = 0.04 \Rightarrow z = -1.75$

•
$$P(-1.75 \le \frac{4.86 - \mu}{2/\sqrt{5}} \le 1.75) = 0.92 \Leftrightarrow$$

 $P(4.86 - \frac{1.75.2}{\sqrt{5}} \le \mu \le 4.86 + \frac{1.75.2}{\sqrt{5}}) = 0.92$

Confidence interval (CI)

Example 1

 $\begin{array}{l} X_1, \ldots, X_5 \sim \mathcal{N}(\mu, \sigma) \text{ IID} \\ \{x_1, \ldots, x_5\} = \{3.5, 5.7, 1.2, 6.8, 7.1\}; \ \mu \text{ unknown}, \ \sigma = 2 \\ \text{Calculate a 92 \% CI for } \mu \end{array}$

• Determine *z* such that
$$P(Z \le z) = 0.04 \Rightarrow z = -1.75$$

•
$$P(-1.75 \le \frac{4.86 - \mu}{2/\sqrt{5}} \le 1.75) = 0.92 \Leftrightarrow$$

 $P(4.86 - \frac{1.75 \cdot 2}{\sqrt{5}} \le \mu \le 4.86 + \frac{1.75 \cdot 2}{\sqrt{5}}) = 0.92$
 \Leftrightarrow 92 % Cl for $\mu: \left[4.86 - \frac{1.75 \cdot 2}{\sqrt{5}}, 4.86 + \frac{1.75 \cdot 2}{\sqrt{5}}\right] = [3.295, 6.425]$

▲□▶ ▲圖▶ ▲画▶ ▲画▶ 三回 ●の≪で

Confidence interval (CI)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Example 2(from before)

 $X_1, \ldots, X_{75} \sim \mathcal{N}(\mu, \sigma)$ IID, $\sigma = 0.0015, \bar{x} = 0.310$ (realization of \overline{X})

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Confidence interval (CI)

Example 2(from before)

 $X_1, \ldots, X_{75} \sim \mathcal{N}(\mu, \sigma)$ IID, $\sigma = 0.0015, \bar{x} = 0.310$ (realization of \overline{X})

• Determine *z* such that $P(Z \le z) = 0.025 \Rightarrow z = -1.96$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Confidence interval (CI)

Example 2(from before)

 $X_1, \ldots, X_{75} \sim \mathcal{N}(\mu, \sigma)$ IID, $\sigma = 0.0015, \bar{x} = 0.310$ (realization of \overline{X})

• Determine *z* such that $P(Z \le z) = 0.025 \Rightarrow z = -1.96$

•
$$P(-1.96 \le \frac{0.310 - \mu}{0.0015 / \sqrt{75}} \le 1.96) = 0.05$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Confidence interval (CI)

Example 2(from before)

 $X_1, \ldots, X_{75} \sim \mathcal{N}(\mu, \sigma)$ IID, $\sigma = 0.0015, \bar{x} = 0.310$ (realization of \overline{X})

• Determine *z* such that $P(Z \le z) = 0.025 \Rightarrow z = -1.96$

•
$$P(-1.96 \le \frac{0.310 - \mu}{0.0015 / \sqrt{75}} \le 1.96) = 0.05$$

 $\Leftrightarrow \ \textit{P}(0.310 - \frac{1.96 \cdot 0.0015}{\sqrt{75}} \le \mu \le 0.310 + \frac{1.96 \cdot 0.0015}{\sqrt{75}}) = 0.95$

Confidence interval (CI)

Example 2(from before)

 $X_1, \ldots, X_{75} \sim \mathcal{N}(\mu, \sigma)$ IID, $\sigma = 0.0015, \bar{x} = 0.310$ (realization of \overline{X})

• Determine *z* such that
$$P(Z \le z) = 0.025 \Rightarrow z = -1.96$$

•
$$P(-1.96 \le \frac{0.310 - \mu}{0.0015 / \sqrt{75}} \le 1.96) = 0.05$$

$$\Leftrightarrow \ P(0.310 - \frac{1.96 \cdot 0.0015}{\sqrt{75}} \le \mu \le 0.310 + \frac{1.96 \cdot 0.0015}{\sqrt{75}}) = 0.95$$

$$\Rightarrow$$
 95 % CI for μ : [0.3097, 0.3103]

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへぐ

Revision: Estimation Problems

Central Limit Theorem

Estimation of μ and σ from the same data

Estimation of μ if σ is unknown

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Revision: Estimation Problems

Central Limit Theorem

Estimation of μ and σ from the same data

Estimation of μ if σ is unknown

Natural statistics for μ : X₁,..., X_n ~ N(μ, σ) IID

Revision: Estimation Problems

Central Limit Theorem

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Estimation of μ and σ from the same data

- Natural statistics for $\mu : X_1, \ldots, X_n \sim \mathcal{N}(\mu, \sigma)$ IID
- $T = \frac{\overline{X} \mu}{\frac{S}{\sqrt{n}}}$ (use sample standard deviation instead of σ)

Revision: Estimation Problems

Central Limit Theorem

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Estimation of μ and σ from the same data

- Natural statistics for $\mu : X_1, \ldots, X_n \sim \mathcal{N}(\mu, \sigma)$ IID
- $T = \frac{\overline{X} \mu}{\frac{S}{\sqrt{n}}}$ (use sample standard deviation instead of σ)

•
$$T = \frac{\overline{X} - \mu}{S/\sqrt{n}} = \frac{\overline{X} - \mu}{\sigma/\sqrt{n}} \cdot \frac{\sigma}{S}$$

Revision: Estimation Problems

Central Limit Theorem

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Estimation of μ and σ from the same data

- Natural statistics for $\mu : X_1, \ldots, X_n \sim \mathcal{N}(\mu, \sigma)$ IID
- $T = \frac{\overline{X} \mu}{\frac{\overline{X}}{\sqrt{n}}}$ (use sample standard deviation instead of σ)

•
$$T = \frac{\overline{X} - \mu}{S/\sqrt{n}} = \frac{\overline{X} - \mu}{\sigma/\sqrt{n}} \cdot \frac{\sigma}{S}$$

• Let
$$Z \stackrel{\text{def}}{=} \frac{\overline{X} - \mu}{\sigma/\sqrt{n}} \sim \mathcal{N}(0, 1), \, \underline{\chi}^2 \stackrel{\text{def}}{=} \frac{(n-1)s^2}{\sigma^2} \sim \chi^2_{n-1}$$

Revision: Estimation Problems

Central Limit Theorem

(日) (日) (日) (日) (日) (日) (日)

Estimation of μ and σ from the same data

- Natural statistics for $\mu : X_1, \ldots, X_n \sim \mathcal{N}(\mu, \sigma)$ IID
- $T = \frac{\overline{X} \mu}{\frac{S}{\sqrt{n}}}$ (use sample standard deviation instead of σ)

•
$$T = \frac{\overline{X} - \mu}{S/\sqrt{n}} = \frac{\overline{X} - \mu}{\sigma/\sqrt{n}} \cdot \frac{\sigma}{S}$$

- Let $Z \stackrel{\text{def}}{=} \frac{\overline{X}_{-\mu}}{\sigma/\sqrt{n}} \sim \mathcal{N}(0, 1), \, \underline{\chi}^2 \stackrel{\text{def}}{=} \frac{(n-1)s^2}{\sigma^2} \sim \chi^2_{n-1}$
- Then: $T = \frac{z}{\sqrt{\chi^2/(n-1)}}$ and is distributed according to the *t*-distribution with n 1 degrees of freedom

Revision: Estimation Problems

Central Limit Theorem

(日) (日) (日) (日) (日) (日) (日)

Estimation of μ and σ from the same data

Estimation of μ if σ is unknown

- Natural statistics for μ : X₁,..., X_n ~ N(μ, σ) IID
- $T = \frac{\overline{X} \mu}{\frac{S}{\sqrt{n}}}$ (use sample standard deviation instead of σ)

•
$$T = \frac{\overline{X} - \mu}{S/\sqrt{n}} = \frac{\overline{X} - \mu}{\sigma/\sqrt{n}} \cdot \frac{\sigma}{S}$$

- Let $Z \stackrel{\text{def}}{=} \frac{\overline{X}_{-\mu}}{\sigma/\sqrt{n}} \sim \mathcal{N}(0, 1), \, \underline{\chi}^2 \stackrel{\text{def}}{=} \frac{(n-1)s^2}{\sigma^2} \sim \chi^2_{n-1}$
- Then: $T = \frac{z}{\sqrt{\chi^2/(n-1)}}$ and is distributed according to the *t*-distribution with n 1 degrees of freedom

How to find $P(T \ge t)$?

book – table A4: Values of t such that P(T ≥ t) = α - for several α < 0.5 and ν = ♯ degrees of freedom

Revision: Estimation Problems

Central Limit Theorem

Estimation of μ and σ from the same data

Estimation of μ if σ is unknown

- Natural statistics for μ : X₁,..., X_n ~ N(μ, σ) IID
- $T = \frac{\overline{X} \mu}{\frac{S}{\sqrt{n}}}$ (use sample standard deviation instead of σ)

•
$$T = \frac{\overline{X} - \mu}{S/\sqrt{n}} = \frac{\overline{X} - \mu}{\sigma/\sqrt{n}} \cdot \frac{\sigma}{S}$$

- Let $Z \stackrel{\text{def}}{=} \frac{\overline{X}_{-\mu}}{\sigma/\sqrt{n}} \sim \mathcal{N}(0, 1), \, \underline{\chi}^2 \stackrel{\text{def}}{=} \frac{(n-1)s^2}{\sigma^2} \sim \chi^2_{n-1}$
- Then: $T = \frac{z}{\sqrt{\chi^2/(n-1)}}$ and is distributed according to the *t*-distribution with n 1 degrees of freedom

How to find $P(T \ge t)$?

• book – table A4: Values of *t* such that $P(T \ge t) = \alpha$ - for several $\alpha < 0.5$ and $v = \sharp$ degrees of freedom

Due to symmetry around t = 0 we have $P(T \le -t) = P(T \ge t) = \alpha$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

Revision: Estimation Problems

Central Limit Theorem

Estimation of μ and σ from the same data

Estimation of μ if σ is unknown

- Natural statistics for μ : X₁,..., X_n ~ N(μ, σ) IID
- $T = \frac{\overline{X} \mu}{\frac{S}{\sqrt{n}}}$ (use sample standard deviation instead of σ)

•
$$T = \frac{\overline{X} - \mu}{S/\sqrt{n}} = \frac{\overline{X} - \mu}{\sigma/\sqrt{n}} \cdot \frac{\sigma}{S}$$

- Let $Z \stackrel{\text{def}}{=} \frac{\overline{X} \mu}{\sigma/\sqrt{n}} \sim \mathcal{N}(0, 1), \, \underline{\chi}^2 \stackrel{\text{def}}{=} \frac{(n-1)s^2}{\sigma^2} \sim \chi^2_{n-1}$
- Then: $T = \frac{z}{\sqrt{\chi^2/(n-1)}}$ and is distributed according to the *t*-distribution with n 1 degrees of freedom

How to find $P(T \ge t)$?

• book – table A4: Values of *t* such that $P(T \ge t) = \alpha$ - for several $\alpha < 0.5$ and $v = \sharp$ degrees of freedom

Due to symmetry around t = 0 we have $P(T \le -t) = P(T \ge t) = \alpha$ or similarly: $P(T \le -t) = 1 - \alpha$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Example 1 (from before)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Estimation of μ and σ from the same data

Example 1 (from before)

Let $\{x_1, ..., x_5\} = \{3.5, 5.7, 1.2, 6.8, 7.1\}$. Suppose that σ is unknown, $X_i \sim \mathcal{N}(\mu, \sigma)$. Calculate a 98.5% CI for μ . From before:

● *x* = 4.86

Example 1 (from before)

Let $\{x_1, \ldots, x_5\} = \{3.5, 5.7, 1.2, 6.8, 7.1\}$. Suppose that σ is unknown, $X_i \sim \mathcal{N}(\mu, \sigma)$. Calculate a 98.5% CI for μ . From before:

● x̄ = 4.86

•
$$(n-1) \cdot s^2 = 24.732 \Rightarrow s = \sqrt{\frac{24.732}{4}} = 2.487$$

Example 1 (from before)

- x̄ = 4.86
- $(n-1) \cdot s^2 = 24.732 \Rightarrow s = \sqrt{\frac{24.732}{4}} = 2.487$

•
$$T = \frac{\overline{X} - \mu}{S/\sqrt{n}} \sim t_{n-1} = t_4$$

Example 1 (from before)

Let $\{x_1, ..., x_5\} = \{3.5, 5.7, 1.2, 6.8, 7.1\}$. Suppose that σ is unknown, $X_i \sim \mathcal{N}(\mu, \sigma)$. Calculate a 98.5% CI for μ . From before:

- x̄ = 4.86
- $(n-1) \cdot s^2 = 24.732 \Rightarrow s = \sqrt{\frac{24.732}{4}} = 2.487$

•
$$T = \frac{\overline{X} - \mu}{S/\sqrt{n}} \sim t_{n-1} = t_4$$

• Realization for $T: \frac{4.86-\mu}{2.487/\sqrt{5}}$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Estimation of μ and σ from the same data

Example 1 (from before)

- x̄ = 4.86
- $(n-1) \cdot s^2 = 24.732 \Rightarrow s = \sqrt{\frac{24.732}{4}} = 2.487$
- $T = \frac{\overline{X} \mu}{S/\sqrt{n}} \sim t_{n-1} = t_4$
- Realization for $T: \frac{4.86-\mu}{2.487/\sqrt{5}}$
- Then: $P(T \ge 1) = 0.0075 \Rightarrow t = 4.088$ (table A4)

(日) (日) (日) (日) (日) (日) (日)

Estimation of μ and σ from the same data

Example 1 (from before)

- x̄ = 4.86
- $(n-1) \cdot s^2 = 24.732 \Rightarrow s = \sqrt{\frac{24.732}{4}} = 2.487$
- $T = \frac{\overline{X} \mu}{S/\sqrt{n}} \sim t_{n-1} = t_4$
- Realization for $T: \frac{4.86-\mu}{2.487/\sqrt{5}}$
- Then: $P(T \ge 1) = 0.0075 \Rightarrow t = 4.088$ (table A4)
- Hence: $P(-4.088 \le \frac{4.86 \mu}{2.487/\sqrt{5}} \le 4.088) = 0.985$ $\Leftrightarrow P(0.313 \le \mu \le 9.407) = 0.985$

Example 1 (from before)

- x̄ = 4.86
- $(n-1) \cdot s^2 = 24.732 \Rightarrow s = \sqrt{\frac{24.732}{4}} = 2.487$
- $T = \frac{\overline{X} \mu}{S/\sqrt{n}} \sim t_{n-1} = t_4$
- Realization for $T: \frac{4.86-\mu}{2.487/\sqrt{5}}$
- Then: $P(T \ge 1) = 0.0075 \Rightarrow t = 4.088$ (table A4)
- Hence: $P(-4.088 \le \frac{4.86-\mu}{2.487/\sqrt{5}} \le 4.088) = 0.985$ $\Leftrightarrow P(0.313 \le \mu \le 9.407) = 0.985$
- Therefore: 98% CI for μ : [0.313, 9.407]

Revision: Estimation Problems

Central Limit Theorem

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Estimation of μ and σ from the same data

General formula

If σ is unknown:

$$\frac{1 - \alpha \operatorname{Cl} \operatorname{for} \mu}{(1 - \alpha) \cdot 100\% \operatorname{Cl} \operatorname{for} \mu} \right\} : \left[\overline{x} - \frac{t \cdot s}{\sqrt{n}}, \overline{x} + \frac{t \cdot s}{\sqrt{n}} \right],$$

where t can be found in table A4.

Revision: Estimation Problems

Central Limit Theorem

Estimation of μ and σ from the same data

General formula

If σ is unknown:

$$\left. \begin{array}{c} 1 - \alpha \ \text{Cl for } \mu \\ (1 - \alpha) \cdot 100\% \ \text{Cl for } \mu \end{array} \right\} : \left[\overline{x} - \frac{t \cdot s}{\sqrt{n}}, \overline{x} + \frac{t \cdot s}{\sqrt{n}} \right],$$

where t can be found in table A4.

Example 2 (from before)

General formula

If σ is unknown:

$$\left. \begin{array}{c} 1 - \alpha \ \text{Cl for } \mu \\ (1 - \alpha) \cdot 100\% \ \text{Cl for } \mu \end{array} \right\} : \left[\bar{x} - \frac{t \cdot s}{\sqrt{n}}, \bar{x} + \frac{t \cdot s}{\sqrt{n}} \right],$$

where *t* can be found in table A4.

Example 2 (from before)

Given: X₁,..., X₇₅ IID, X_i ~ N(μ, σ), μ and σ unknown, x̄ = 0.310, let s = 0.0028. Calculate a 90% CI for μ

General formula

If σ is unknown:

$$\left. \begin{array}{c} 1 - \alpha \ \text{Cl for } \mu \\ (1 - \alpha) \cdot 100\% \ \text{Cl for } \mu \end{array} \right\} : \left[\bar{x} - \frac{t \cdot s}{\sqrt{n}}, \bar{x} + \frac{t \cdot s}{\sqrt{n}} \right],$$

where t can be found in table A4.

Example 2 (from before)

- Given: X₁,..., X₇₅ IID, X_i ~ N(μ, σ), μ and σ unknown, x̄ = 0.310, let s = 0.0028. Calculate a 90% CI for μ
- $T = \frac{\bar{x} \mu}{S/\sqrt{n}} \sim t_{n-1} \Rightarrow \frac{0.310 \mu}{0.0028/\sqrt{95}} \sim t_{74}$ not in the table, we approximate by t_{60} ("pretty close")

General formula

If σ is unknown:

$$\left. \begin{array}{c} 1 - \alpha \ \text{Cl for } \mu \\ (1 - \alpha) \cdot 100\% \ \text{Cl for } \mu \end{array} \right\} : \left[\overline{x} - \frac{t \cdot s}{\sqrt{n}}, \overline{x} + \frac{t \cdot s}{\sqrt{n}} \right],$$

where t can be found in table A4.

Example 2 (from before)

- Given: X₁,..., X₇₅ IID, X_i ~ N(μ, σ), μ and σ unknown, x̄ = 0.310, let s = 0.0028. Calculate a 90% CI for μ
- $T = \frac{\bar{x} \mu}{S/\sqrt{n}} \sim t_{n-1} \Rightarrow \frac{0.310 \mu}{0.0028/\sqrt{95}} \sim t_{74}$ not in the table, we approximate by t_{60} ("pretty close")

•
$$P(-1.671 \le \frac{0.310 - \mu}{0.0028/\sqrt{75}} \le 1.671) = 0.90$$

General formula

If σ is unknown:

$$\left. \begin{array}{c} 1 - \alpha \ \text{Cl for } \mu \\ (1 - \alpha) \cdot 100\% \ \text{Cl for } \mu \end{array} \right\} : \left[\bar{x} - \frac{t \cdot s}{\sqrt{n}}, \bar{x} + \frac{t \cdot s}{\sqrt{n}} \right],$$

where t can be found in table A4.

Example 2 (from before)

- Given: X₁,..., X₇₅ IID, X_i ~ N(μ, σ), μ and σ unknown, x̄ = 0.310, let s = 0.0028. Calculate a 90% CI for μ
- $T = \frac{\bar{x} \mu}{S/\sqrt{n}} \sim t_{n-1} \Rightarrow \frac{0.310 \mu}{0.0028/\sqrt{95}} \sim t_{74}$ not in the table, we approximate by t_{60} ("pretty close")

•
$$P(-1.671 \le \frac{0.310 - \mu}{0.0028 / \sqrt{75}} \le 1.671) = 0.90$$

 \Rightarrow *P*(0.3095 $\leq \mu \leq$ 0.3105) = 0.9

General formula

If σ is unknown:

$$\left. \begin{array}{c} 1 - \alpha \ \text{Cl for } \mu \\ (1 - \alpha) \cdot 100\% \ \text{Cl for } \mu \end{array} \right\} : \left[\bar{x} - \frac{t \cdot s}{\sqrt{n}}, \bar{x} + \frac{t \cdot s}{\sqrt{n}} \right],$$

where t can be found in table A4.

Example 2 (from before)

- Given: X₁,..., X₇₅ IID, X_i ~ N(μ, σ), μ and σ unknown, x̄ = 0.310, let s = 0.0028. Calculate a 90% CI for μ
- $T = \frac{\bar{x} \mu}{S/\sqrt{n}} \sim t_{n-1} \Rightarrow \frac{0.310 \mu}{0.0028/\sqrt{95}} \sim t_{74}$ not in the table, we approximate by t_{60} ("pretty close")

•
$$P(-1.671 \le \frac{0.310 - \mu}{0.0028 / \sqrt{75}} \le 1.671) = 0.90$$

- \Rightarrow *P*(0.3095 $\leq \mu \leq$ 0.3105) = 0.9
- \Rightarrow 90 % CI for μ : [0.3095, 0.3105]

Revision: Estimation Problems

Central Limit Theorem

00000000000

Estimation of μ and σ from the same data

Revision: Estimation Problems

Central Limit Theorem

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Estimation of μ and σ from the same data

Revision: Estimation Problems

Central Limit Theorem

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Estimation of μ and σ from the same data

Example 2 (from before)

• Given: X_1, \ldots, X_{75} IID, $X_i \sim \mathcal{N}(\mu, \sigma)$, μ and σ unknown, $\bar{x} = 0.310$, s = 0.0028. Calculate a 96% CI for σ

Revision: Estimation Problems

Central Limit Theorem

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Estimation of μ and σ from the same data

Example 2 (from before)

• Given: X_1, \ldots, X_{75} IID, $X_i \sim \mathcal{N}(\mu, \sigma)$, μ and σ unknown, $\bar{x} = 0.310$, s = 0.0028. Calculate a 96% CI for σ

•
$$T = \frac{(n-1)S^2}{\sigma^2} \sim \chi^2_{n-1}$$

Revision: Estimation Problems

Central Limit Theorem

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Estimation of μ and σ from the same data

- Given: X_1, \ldots, X_{75} IID, $X_i \sim \mathcal{N}(\mu, \sigma)$, μ and σ unknown, $\bar{x} = 0.310$, s = 0.0028. Calculate a 96% CI for σ
- $T = \frac{(n-1)S^2}{\sigma^2} \sim \chi^2_{n-1}$ $\Rightarrow \frac{74(0.0028)^2}{\sigma^2} \sim \chi^2_{74}$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Estimation of μ and σ from the same data

Example 2 (from before)

• Given: X_1, \ldots, X_{75} IID, $X_i \sim \mathcal{N}(\mu, \sigma)$, μ and σ unknown, $\bar{x} = 0.310$, s = 0.0028. Calculate a 96% CI for σ

•
$$T = \frac{(n-1)S^2}{\sigma^2} \sim \chi^2_{n-1}$$

 $\Rightarrow \frac{74(0.0028)^2}{\sigma^2} \sim \chi^2_{74}$ No approximation in any table, χ^2_{30} is not even close to χ^2_{74}

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

Estimation of μ and σ from the same data

Example 2 (from before)

• Given: X_1, \ldots, X_{75} IID, $X_i \sim \mathcal{N}(\mu, \sigma)$, μ and σ unknown, $\bar{x} = 0.310$, s = 0.0028. Calculate a 96% CI for σ

•
$$T = \frac{(n-1)S^2}{\sigma^2} \sim \chi^2_{n-1}$$

 $\Rightarrow \frac{74 (0.0028)^2}{\sigma^2} \sim \chi^2_{74}$
No approximation in any table, χ^2_{30} is not even close to χ^2_{74}
Note (from before): $\underline{\chi}^2 \sim \chi^2_n$

Estimation of μ and σ from the same data

Example 2 (from before)

• Given: X_1, \ldots, X_{75} IID, $X_i \sim \mathcal{N}(\mu, \sigma)$, μ and σ unknown, $\bar{x} = 0.310$, s = 0.0028. Calculate a 96% CI for σ

•
$$T = \frac{(n-1)S^2}{\sigma^2} \sim \chi^2_{n-1}$$

 $\Rightarrow \frac{74 (0.0028)^2}{\sigma^2} \sim \chi_{74}^2$ No approximation in any table, χ_{30}^2 is not even close to χ_{74}^2 Note (from before): $\underline{\chi}^2 \sim \chi_n^2 \Rightarrow E(\underline{\chi}^2) = n$, $V(\underline{\chi}^2) = 2n$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Revision: Estimation Problems

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

Theorem

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Theorem

What if the random sample does not have a normal distribution?

What if the random sample does not have a normal distribution?

• Small sample size (book: $n \leq 30$): We have a problem

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Theorem

What if the random sample does not have a normal distribution?

- Small sample size (book: $n \leq 30$): We have a problem
- Large sample size (book: *n* > 30): We have a very surprising solution

What if the random sample does not have a normal distribution?

- Small sample size (book: $n \leq 30$): We have a problem
- Large sample size (book: *n* > 30): We have a very surprising solution

Central limit theorem

▲□▶▲圖▶▲≣▶▲≣▶ ■ のQの

What if the random sample does not have a normal distribution?

- Small sample size (book: $n \leq 30$): We have a problem
- Large sample size (book: *n* > 30): We have a very surprising solution

Central limit theorem

• Let X_1, \ldots, X_n be IID with unknown μ and σ .

What if the random sample does not have a normal distribution?

- Small sample size (book: $n \leq 30$): We have a problem
- Large sample size (book: n > 30): We have a very surprising solution

Central limit theorem

• Let X_1, \ldots, X_n be IID with unknown μ and σ .

• Then $E(\overline{X}) = \mu$, $V(\overline{X}) = \frac{\sigma^2}{n}$, and, if *n* is big enough,

$$Z \stackrel{\text{def}}{=} \frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \stackrel{\text{approx}}{\sim} \mathcal{N}(0, 1)$$

・ロト・西ト・西ト・西ト・日・

(日) (日) (日) (日) (日) (日) (日)

Theorem

What if the random sample does not have a normal distribution?

- Small sample size (book: $n \leq 30$): We have a problem
- Large sample size (book: n > 30): We have a very surprising solution

Central limit theorem

- Let X_1, \ldots, X_n be IID with unknown μ and σ .
- Then $E(\overline{X}) = \mu$, $V(\overline{X}) = \frac{\sigma^2}{n}$, and, if *n* is big enough,

$$Z \stackrel{\text{def}}{=} \frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \stackrel{\text{approx}}{\sim} \mathcal{N}(0, 1)$$

Book: Sections 8.4 (σ known), 9.4 (σ unknown)

Revision: Estimation Problems

Theorem

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Theorem

Central limit theorem (CLT)

- Let X_1, \ldots, X_n be IID with unknown μ and σ .
- Then $E(\overline{X}) = \mu$, $V(\overline{X}) = \frac{\sigma^2}{n}$, and, if *n* is big enough,

$$Z \stackrel{ ext{def}}{=} rac{\overline{X} - \mu}{\sigma / \sqrt{n}} \stackrel{ ext{approx}}{\sim} \mathcal{N}(0, 1)$$

Central limit theorem (CLT)

- Let X_1, \ldots, X_n be IID with unknown μ and σ .
- Then $E(\overline{X}) = \mu$, $V(\overline{X}) = \frac{\sigma^2}{n}$, and, if *n* is big enough,

$$Z \stackrel{ ext{def}}{=} rac{\overline{X} - \mu}{\sigma / \sqrt{n}} \stackrel{ ext{approx}}{\sim} \mathcal{N}(0, 1)$$

Central limit theorem (CLT)

- Let X_1, \ldots, X_n be IID with unknown μ and σ .
- Then $E(\overline{X}) = \mu$, $V(\overline{X}) = \frac{\sigma^2}{n}$, and, if *n* is big enough,

$$Z \stackrel{ ext{def}}{=} rac{\overline{X} - \mu}{\sigma / \sqrt{n}} \stackrel{ ext{approx}}{\sim} \mathcal{N}(0, 1)$$

Example 2 (from before)

• Let X_1, \ldots, X_{75} IID, suppose we do not know normality, μ, σ unknown

Central limit theorem (CLT)

- Let X_1, \ldots, X_n be IID with unknown μ and σ .
- Then $E(\overline{X}) = \mu$, $V(\overline{X}) = \frac{\sigma^2}{n}$, and, if *n* is big enough,

$$Z \stackrel{ ext{def}}{=} rac{\overline{X} - \mu}{\sigma / \sqrt{n}} \stackrel{ ext{approx}}{\sim} \mathcal{N}(0, 1)$$

- Let X_1, \ldots, X_{75} IID, suppose we do not know normality, μ, σ unknown

Central limit theorem (CLT)

- Let X_1, \ldots, X_n be IID with unknown μ and σ .
- Then $E(\overline{X}) = \mu$, $V(\overline{X}) = \frac{\sigma^2}{n}$, and, if *n* is big enough,

$$Z \stackrel{ ext{def}}{=} rac{\overline{X} - \mu}{\sigma / \sqrt{n}} \stackrel{ ext{approx}}{\sim} \mathcal{N}(0, 1)$$

- Let X_1, \ldots, X_{75} IID, suppose we do not know normality, μ, σ unknown

$$\Rightarrow \frac{\overline{\chi}_{-\mu}}{\sigma/\sqrt{n}} \overset{\text{approx}}{\sim} \mathcal{N}(0,1)$$
 according to CLT

Central limit theorem (CLT)

- Let X_1, \ldots, X_n be IID with unknown μ and σ .
- Then $E(\overline{X}) = \mu$, $V(\overline{X}) = \frac{\sigma^2}{n}$, and, if *n* is big enough,

$$Z \stackrel{ ext{def}}{=} rac{\overline{X} - \mu}{\sigma / \sqrt{n}} \stackrel{ ext{approx}}{\sim} \mathcal{N}(0, 1)$$

Example 2 (from before)

- Let X_1, \ldots, X_{75} IID, suppose we do not know normality, μ, σ unknown

$$\Rightarrow \frac{\overline{X}-\mu}{\sigma/\sqrt{n}} \overset{\text{approx}}{\sim} \mathcal{N}(0,1)$$
 according to CLT

 \Rightarrow Realization: $\frac{0.310-\mu}{0.0028/\sqrt{75}}$

Central limit theorem (CLT)

- Let X_1, \ldots, X_n be IID with unknown μ and σ .
- Then $E(\overline{X}) = \mu$, $V(\overline{X}) = \frac{\sigma^2}{n}$, and, if *n* is big enough,

$$Z \stackrel{\mathrm{def}}{=} rac{\overline{X} - \mu}{\sigma/\sqrt{n}} \stackrel{\mathrm{approx}}{\sim} \mathcal{N}(0, 1)$$

- Let X_1, \ldots, X_{75} IID, suppose we do not know normality, μ, σ unknown
- $\Rightarrow \frac{\overline{X} \mu}{\sigma / \sqrt{n}} \overset{\text{approx}}{\sim} \mathcal{N}(0, 1)$ according to CLT
- \Rightarrow Realization: $\frac{0.310-\mu}{0.0028/\sqrt{75}}$
- $\Rightarrow~$ 90 % Cl for $\mu: P(-1.645 \leq rac{0.310 \mu}{0.0028/\sqrt{75}} \leq 1.645) = 0.90$

Central limit theorem (CLT)

- Let X_1, \ldots, X_n be IID with unknown μ and σ .
- Then $E(\overline{X}) = \mu$, $V(\overline{X}) = \frac{\sigma^2}{n}$, and, if *n* is big enough,

$$Z \stackrel{ ext{def}}{=} rac{\overline{X} - \mu}{\sigma / \sqrt{n}} \stackrel{ ext{approx}}{\sim} \mathcal{N}(0, 1)$$

- Let X_1, \ldots, X_{75} IID, suppose we do not know normality, μ, σ unknown

$$\Rightarrow \frac{\overline{X}-\mu}{\sigma/\sqrt{n}} \overset{\text{approx}}{\sim} \mathcal{N}(0,1)$$
 according to CLT

- \Rightarrow Realization: $\frac{0.310-\mu}{0.0028/\sqrt{75}}$
- \Rightarrow 90 % CI for μ : $P(-1.645 \le \frac{0.310 \mu}{0.0028 / \sqrt{75}} \le 1.645) = 0.90$

$$\Rightarrow P(0.3095 \le \mu \le 0.3105) = 0.90$$

Central limit theorem (CLT)

- Let X_1, \ldots, X_n be IID with unknown μ and σ .
- Then $E(\overline{X}) = \mu$, $V(\overline{X}) = \frac{\sigma^2}{n}$, and, if *n* is big enough,

$$Z \stackrel{ ext{def}}{=} rac{\overline{X} - \mu}{\sigma / \sqrt{n}} \stackrel{ ext{approx}}{\sim} \mathcal{N}(0, 1)$$

- Let X_1, \ldots, X_{75} IID, suppose we do not know normality, μ, σ unknown

$$\Rightarrow \frac{\overline{X}-\mu}{\sigma/\sqrt{n}} \overset{\text{approx}}{\sim} \mathcal{N}(0,1)$$
 according to CLT

- \Rightarrow Realization: $\frac{0.310-\mu}{0.0028/\sqrt{75}}$
- \Rightarrow 90 % CI for μ : $P(-1.645 \le \frac{0.310 \mu}{0.0028 / \sqrt{75}} \le 1.645) = 0.90$
- $\Rightarrow P(0.3095 \le \mu \le 0.3105) = 0.90$
- \Rightarrow 90 % CI for μ : [0.3095, 0.3105]

Revision: Estimation Problems

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

Theorem

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Theorem

Central limit theorem (CLT)

- Let X_1, \ldots, X_n be IID with unknown μ and σ .
- Then $E(\overline{X}) = \mu$, $V(\overline{X}) = \frac{\sigma^2}{n}$, and, if *n* is big enough,

$$Z \stackrel{\text{def}}{=} \frac{\overline{X} - \mu}{\sigma/\sqrt{n}} \stackrel{\approx}{\sim} \mathcal{N}(0, 1)$$

Central limit theorem (CLT)

- Let X_1, \ldots, X_n be IID with unknown μ and σ .
- Then $E(\overline{X}) = \mu$, $V(\overline{X}) = \frac{\sigma^2}{n}$, and, if *n* is big enough,

$$Z \stackrel{\text{def}}{=} \frac{\overline{X} - \mu}{\sigma/\sqrt{n}} \stackrel{\approx}{\sim} \mathcal{N}(0, 1)$$

Remarks

Central limit theorem (CLT)

- Let X_1, \ldots, X_n be IID with unknown μ and σ .
- Then $E(\overline{X}) = \mu$, $V(\overline{X}) = \frac{\sigma^2}{n}$, and, if *n* is big enough,

$$Z \stackrel{\text{def}}{=} \frac{\overline{X} - \mu}{\sigma/\sqrt{n}} \stackrel{\approx}{\sim} \mathcal{N}(0, 1)$$

Remarks

 Use T-distribution if you have enough information: i.e. normal distribution and a not too large sample

Central limit theorem (CLT)

• Let X_1, \ldots, X_n be IID with unknown μ and σ .

• Then
$$E(\overline{X}) = \mu$$
, $V(\overline{X}) = \frac{\sigma^2}{n}$, and, if *n* is big enough,

$$Z \stackrel{\text{def}}{=} \frac{\overline{X} - \mu}{\sigma/\sqrt{n}} \stackrel{\approx}{\sim} \mathcal{N}(0, 1)$$

Remarks

 Use T-distribution if you have enough information: i.e. normal distribution and a not too large sample

•
$$\underline{\chi}^2 \stackrel{\text{def}}{\equiv} \frac{(n-1)s^2}{\sigma^2} \sim \chi^2_{n-1}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Central limit theorem (CLT)

- Let X_1, \ldots, X_n be IID with unknown μ and σ .
- Then $E(\overline{X}) = \mu$, $V(\overline{X}) = \frac{\sigma^2}{n}$, and, if *n* is big enough,

$$Z \stackrel{\text{def}}{=} \frac{\overline{X} - \mu}{\sigma/\sqrt{n}} \stackrel{\approx}{\sim} \mathcal{N}(0, 1)$$

Remarks

 Use T-distribution if you have enough information: i.e. normal distribution and a not too large sample

•
$$\underline{\chi}^2 \stackrel{\text{def}}{=} \frac{(n-1)s^2}{\sigma^2} \sim \chi^2_{n-1} \Rightarrow V(\underline{\chi}^2) = 2(n-1)$$

Central limit theorem (CLT)

• Let X_1, \ldots, X_n be IID with unknown μ and σ .

• Then
$$E(\overline{X}) = \mu$$
, $V(\overline{X}) = \frac{\sigma^2}{n}$, and, if *n* is big enough,

$$Z \stackrel{\text{def}}{=} \frac{\overline{X} - \mu}{\sigma/\sqrt{n}} \stackrel{\approx}{\sim} \mathcal{N}(0, 1)$$

Remarks

 Use T-distribution if you have enough information: i.e. normal distribution and a not too large sample

•
$$\underline{\chi}^2 \stackrel{\text{def}}{=} \frac{(n-1)s^2}{\sigma^2} \sim \chi^2_{n-1} \Rightarrow V(\underline{\chi}^2) = 2(n-1)$$

 $\Rightarrow V(\frac{s^2}{\sigma^2}) = \frac{1}{(n-1)^2} \cdot V(\underline{\chi}^2) = \frac{2}{n-1} \stackrel{n \to \infty}{\to} 0, \text{ whereas } E(\frac{s^2}{\sigma^2}) = \frac{n-1}{n-1} = 1 \Rightarrow$ That is why we may replace σ by S.