< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Lecture 16: Hypothesis Testing

Kateřina Staňková

Statistics (MAT1003)

May 21, 2012

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Outline

2 Revision: Central Limit Theorem

Bypothesis testing

- Basics
- Errors
- Examples
- Two-sided tests vs. one-sided tests

book: Chapter 10

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

And now ...

Revision: Estimation Problems

2 Revision: Central Limit Theorem

3 Hypothesis testing

- Basics
- Errors
- Examples
- Two-sided tests vs. one-sided tests

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○

Revision: Central Limit Theorem

Hypothesis testing

 X_1, X_2, \ldots, X_n , IID $\mathcal{N}(\mu, \sigma)$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

 $X_1, X_2, ..., X_n$, IID $\mathcal{N}(\mu, \sigma)$ (we sometimes talk about realization ("points") $x_1, ..., x_n$ of $X_1, ..., X_n$; it will be clear from context which of the two notions we mean) Sample mean:

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

 $X_1, X_2, ..., X_n$, IID $\mathcal{N}(\mu, \sigma)$ (we sometimes talk about realization ("points") $x_1, ..., x_n$ of $X_1, ..., X_n$; it will be clear from context which of the two notions we mean)

Sample mean:

• Sample mean has realization $\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$

 $X_1, X_2, ..., X_n$, IID $\mathcal{N}(\mu, \sigma)$ (we sometimes talk about realization ("points") $x_1, ..., x_n$ of $X_1, ..., X_n$; it will be clear from context which of the two notions we mean)

Sample mean:

• Sample mean has realization $\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$

• $E(\overline{X}) = \mu$ (unbiased)

 $X_1, X_2, ..., X_n$, IID $\mathcal{N}(\mu, \sigma)$ (we sometimes talk about realization ("points") $x_1, ..., x_n$ of $X_1, ..., X_n$; it will be clear from context which of the two notions we mean)

Sample mean:

- Sample mean has realization $\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$
- $E(\overline{X}) = \mu$ (unbiased)

•
$$V(\overline{X}) = \frac{\sigma^2}{n} (\sigma_{\overline{X}} = \frac{\sigma}{\sqrt{n}})$$

 $X_1, X_2, ..., X_n$, IID $\mathcal{N}(\mu, \sigma)$ (we sometimes talk about realization ("points") $x_1, ..., x_n$ of $X_1, ..., X_n$; it will be clear from context which of the two notions we mean)

Sample mean:

- Sample mean has realization $\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$
- $E(\overline{X}) = \mu$ (unbiased)

•
$$V(\overline{X}) = \frac{\sigma^2}{n} (\sigma_{\overline{X}} = \frac{\sigma}{\sqrt{n}})$$

$$\Rightarrow \overline{X} \sim \mathcal{N}(\mu, \frac{\sigma}{\sqrt{n}})$$

 $X_1, X_2, ..., X_n$, IID $\mathcal{N}(\mu, \sigma)$ (we sometimes talk about realization ("points") $x_1, ..., x_n$ of $X_1, ..., X_n$; it will be clear from context which of the two notions we mean)

Sample mean:

- Sample mean has realization $\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$
- $E(\overline{X}) = \mu$ (unbiased)
- $V(\overline{X}) = \frac{\sigma^2}{n} (\sigma_{\overline{X}} = \frac{\sigma}{\sqrt{n}})$
- $\Rightarrow \overline{X} \sim \mathcal{N}(\mu, \frac{\sigma}{\sqrt{n}})$

Sample variance:

 $X_1, X_2, ..., X_n$, IID $\mathcal{N}(\mu, \sigma)$ (we sometimes talk about realization ("points") $x_1, ..., x_n$ of $X_1, ..., X_n$; it will be clear from context which of the two notions we mean)

Sample mean:

- Sample mean has realization $\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$
- $E(\overline{X}) = \mu$ (unbiased)
- $V(\overline{X}) = \frac{\sigma^2}{n} (\sigma_{\overline{X}} = \frac{\sigma}{\sqrt{n}})$
- $\Rightarrow \overline{X} \sim \mathcal{N}(\mu, \frac{\sigma}{\sqrt{n}})$

Sample variance:

• Sample variance $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2$ (realization $s^2 = \frac{1}{n-1} \sum_{i=1}^m (x_i - \overline{x})^2$)

 $X_1, X_2, ..., X_n$, IID $\mathcal{N}(\mu, \sigma)$ (we sometimes talk about realization ("points") $x_1, ..., x_n$ of $X_1, ..., X_n$; it will be clear from context which of the two notions we mean)

Sample mean:

- Sample mean has realization $\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$
- $E(\overline{X}) = \mu$ (unbiased)
- $V(\overline{X}) = \frac{\sigma^2}{n} (\sigma_{\overline{X}} = \frac{\sigma}{\sqrt{n}})$
- $\Rightarrow \overline{X} \sim \mathcal{N}(\mu, \frac{\sigma}{\sqrt{n}})$

Sample variance:

- Sample variance $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i \overline{X})^2$ (realization $s^2 = \frac{1}{n-1} \sum_{i=1}^m (X_i \overline{X})^2$)
- $E(S^2) = \sigma^2$ (unbiased)

 $X_1, X_2, ..., X_n$, IID $\mathcal{N}(\mu, \sigma)$ (we sometimes talk about realization ("points") $x_1, ..., x_n$ of $X_1, ..., X_n$; it will be clear from context which of the two notions we mean)

Sample mean:

- Sample mean has realization $\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$
- $E(\overline{X}) = \mu$ (unbiased)
- $V(\overline{X}) = \frac{\sigma^2}{n} (\sigma_{\overline{X}} = \frac{\sigma}{\sqrt{n}})$
- $\Rightarrow \overline{X} \sim \mathcal{N}(\mu, \frac{\sigma}{\sqrt{n}})$

Sample variance:

- Sample variance $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i \overline{X})^2$ (realization $s^2 = \frac{1}{n-1} \sum_{i=1}^{m} (x_i \overline{x})^2$)
- $E(S^2) = \sigma^2$ (unbiased)

Last week – estimation of σ^2 or σ

 $X_1, X_2, ..., X_n$, IID $\mathcal{N}(\mu, \sigma)$ (we sometimes talk about realization ("points") $x_1, ..., x_n$ of $X_1, ..., X_n$; it will be clear from context which of the two notions we mean)

Sample mean:

- Sample mean has realization $\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$
- $E(\overline{X}) = \mu$ (unbiased)
- $V(\overline{X}) = \frac{\sigma^2}{n} (\sigma_{\overline{X}} = \frac{\sigma}{\sqrt{n}})$
- $\Rightarrow \overline{X} \sim \mathcal{N}(\mu, \frac{\sigma}{\sqrt{n}})$

Sample variance:

• Sample variance $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2$ (realization $s^2 = \frac{1}{n-1} \sum_{i=1}^m (X_i - \overline{X})^2$)

• $E(S^2) = \sigma^2$ (unbiased)

Last week – estimation of σ^2 or σ

• μ known: $\underline{\chi}^2 \stackrel{\text{def}}{=} \sum_{i=1}^n \frac{(X_i - \mu)}{\sigma^2} \sim \chi_n^2$ (chi-squared distribution with *n* degrees of freedom) \Rightarrow calculate confidence interval (CI) for σ^2

 $X_1, X_2, ..., X_n$, IID $\mathcal{N}(\mu, \sigma)$ (we sometimes talk about realization ("points") $x_1, ..., x_n$ of $X_1, ..., X_n$; it will be clear from context which of the two notions we mean)

Sample mean:

- Sample mean has realization $\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$
- $E(\overline{X}) = \mu$ (unbiased)
- $V(\overline{X}) = \frac{\sigma^2}{n} (\sigma_{\overline{X}} = \frac{\sigma}{\sqrt{n}})$
- $\Rightarrow \overline{X} \sim \mathcal{N}(\mu, \frac{\sigma}{\sqrt{n}})$

Sample variance:

• Sample variance $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2$ (realization $s^2 = \frac{1}{n-1} \sum_{i=1}^m (x_i - \overline{x})^2$)

• $E(S^2) = \sigma^2$ (unbiased)

Last week – estimation of σ^2 or σ

- μ known: $\underline{\chi}^2 \stackrel{\text{def}}{=} \sum_{i=1}^n \frac{(X_i \mu)}{\sigma^2} \sim \chi_n^2$ (chi-squared distribution with *n* degrees of freedom) \Rightarrow calculate confidence interval (CI) for σ^2
- μ unknown: $\chi^2 \stackrel{\text{def}}{=} \sum_{i=1}^n \frac{(X_i \overline{X})}{\sigma^2} = \frac{(n-1)S^2}{\sigma^2} \sim \chi^2_{n-1}$ (chi-squared distribution with *n* degrees of freedom) \Rightarrow calculate confidence interval (CI) for σ^2 and σ^2 (book: Section 9.12)

And now ...

2 Revision: Central Limit Theorem

3 Hypothesis testing

- Basics
- Errors
- Examples
- Two-sided tests vs. one-sided tests

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Central limit theorem (CLT)

- Let X_1, \ldots, X_n be IID with unknown μ and σ .
- Then $E(\overline{X}) = \mu$, $V(\overline{X}) = \frac{\sigma^2}{n}$, and, if *n* is big enough,

$$Z \stackrel{\text{def}}{=} rac{\overline{X} - \mu}{\sigma/\sqrt{n}} \approx \mathcal{N}(0, 1)$$

Central limit theorem (CLT)

- Let X_1, \ldots, X_n be IID with unknown μ and σ .
- Then $E(\overline{X}) = \mu$, $V(\overline{X}) = \frac{\sigma^2}{n}$, and, if *n* is big enough,

$$Z \stackrel{ ext{def}}{=} rac{\overline{X} - \mu}{\sigma/\sqrt{n}} {pprox} \mathcal{N}(0, 1)$$

Remarks

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Central limit theorem (CLT)

- Let X_1, \ldots, X_n be IID with unknown μ and σ .
- Then $E(\overline{X}) = \mu$, $V(\overline{X}) = \frac{\sigma^2}{n}$, and, if *n* is big enough,

$$Z \stackrel{\text{def}}{=} rac{\overline{X} - \mu}{\sigma / \sqrt{n}} \approx \mathcal{N}(0, 1)$$

Remarks

 Use T-distribution if you have enough information: i.e. normal distribution and a not too large sample

Central limit theorem (CLT)

- Let X_1, \ldots, X_n be IID with unknown μ and σ .
- Then $E(\overline{X}) = \mu$, $V(\overline{X}) = \frac{\sigma^2}{n}$, and, if *n* is big enough,

$$Z \stackrel{\text{def}}{=} rac{\overline{X} - \mu}{\sigma / \sqrt{n}} \approx \mathcal{N}(0, 1)$$

Remarks

 Use T-distribution if you have enough information: i.e. normal distribution and a not too large sample

•
$$\underline{\chi}^2 \stackrel{\text{def}}{=} \frac{(n-1)s^2}{\sigma^2} \sim \chi^2_{n-1}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ● ●

Central limit theorem (CLT)

- Let X_1, \ldots, X_n be IID with unknown μ and σ .
- Then $E(\overline{X}) = \mu$, $V(\overline{X}) = \frac{\sigma^2}{n}$, and, if *n* is big enough,

$$Z \stackrel{\text{def}}{=} rac{\overline{X} - \mu}{\sigma / \sqrt{n}} \approx \mathcal{N}(0, 1)$$

Remarks

 Use T-distribution if you have enough information: i.e. normal distribution and a not too large sample

•
$$\underline{\chi}^2 \stackrel{\text{def}}{=} \frac{(n-1)s^2}{\sigma^2} \sim \chi^2_{n-1} \Rightarrow V(\underline{\chi}^2) = 2(n-1)$$

・ロト・西ト・ヨト・日下 ひゃぐ

Central limit theorem (CLT)

- Let X_1, \ldots, X_n be IID with unknown μ and σ .
- Then $E(\overline{X}) = \mu$, $V(\overline{X}) = \frac{\sigma^2}{n}$, and, if *n* is big enough,

$$Z \stackrel{\text{def}}{=} rac{\overline{X} - \mu}{\sigma / \sqrt{n}} \approx \mathcal{N}(0, 1)$$

Remarks

• Use T-distribution if you have enough information: i.e. normal distribution and a not too large sample

•
$$\underline{\chi}^2 \stackrel{\text{def}}{=} \frac{(n-1)s^2}{\sigma^2} \sim \chi^2_{n-1} \Rightarrow V(\underline{\chi}^2) = 2(n-1)$$

 $\Rightarrow V(\frac{s^2}{\sigma^2}) = \frac{1}{(n-1)^2} \cdot V(\underline{\chi}^2) = \frac{2}{n-1} \stackrel{n \to \infty}{\to} 0, \text{ whereas } E(\frac{s^2}{\sigma^2}) = \frac{n-1}{n-1} = 1 \Rightarrow$ That is why we may replace σ by S.

And now ...

2 Revision: Central Limit Theorem

Hypothesis testing

- Basics
- Errors
- Examples
- Two-sided tests vs. one-sided tests

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Null hypothesis

Basics

Null hypothesis

Hypothesis: Some assertation/conjecture concerning the population that we are drawing from. E.g.:

Basics

Null hypothesis

Hypothesis: Some assertation/conjecture concerning the population that we are drawing from. E.g.:

(a) $\mu = 20$

Basics

Null hypothesis

Hypothesis: Some assertation/conjecture concerning the population that we are drawing from. E.g.:

(a)
$$\mu = 20$$

(b) $\mu \le 20$

Basics

Null hypothesis

Hypothesis: Some assertation/conjecture concerning the population that we are drawing from. E.g.:

(a) $\mu = 20$ (b) $\mu \le 20$ (c) $\sigma \ge 5$

Basics

Null hypothesis

Hypothesis: Some assertation/conjecture concerning the population that we are drawing from. E.g.:

(a)
$$\mu = 20$$

(b) $\mu \le 20$
(c) $\sigma \ge 5$
 H_0 : The null hypothesis

Null hypothesis

Hypothesis: Some assertation/conjecture concerning the population that we are drawing from. E.g.:

(a)
$$\mu = 20$$

(b) $\mu \le 20$
(c) $\sigma \ge 5$
 H_0 : The null hypothesis

Alternative hypothesis

▲□▶▲圖▶▲≣▶▲≣▶ ▲■ のへ⊙

Null hypothesis

Hypothesis: Some assertation/conjecture concerning the population that we are drawing from. E.g.:

(a)
$$\mu = 20$$

(b) $\mu \le 20$
(c) $\sigma \ge 5$
 H_0 : The null hypothesis

Alternative hypothesis

Null hypothesis

Hypothesis: Some assertation/conjecture concerning the population that we are drawing from. E.g.:

(a)
$$\mu = 20$$

(b) $\mu \le 20$
(c) $\sigma \ge 5$
 H_0 : The null hypothesis

Alternative hypothesis

(a) $\mu \neq 20$ (b) $\mu > 20$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Basics

Null hypothesis

Hypothesis: Some assertation/conjecture concerning the population that we are drawing from. E.g.:

(a)
$$\mu = 20$$

(b) $\mu \le 20$
(c) $\sigma \ge 5$
 H_0 : The null hypothesis

Alternative hypothesis

(a) $\mu \neq 20$ (b) $\mu > 20$ (c) $\sigma < 5$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Basics

Null hypothesis

Hypothesis: Some assertation/conjecture concerning the population that we are drawing from. E.g.:

(a)
$$\mu = 20$$

(b) $\mu \le 20$
(c) $\sigma \ge 5$
 H_0 : The null hypothesis

Alternative hypothesis

(a)
$$\mu \neq 20$$

(b) $\mu > 20$
(c) $\sigma < 5$
 H_1 : The alternative hypothesis

Basics

Null hypothesis

Hypothesis: Some assertation/conjecture concerning the population that we are drawing from. E.g.:

(a)
$$\mu = 20$$

(b) $\mu \le 20$
(c) $\sigma \ge 5$
 H_0 : The null hypothesis

Alternative hypothesis

(a)
$$\mu \neq 20$$

(b) $\mu > 20$
(c) $\sigma < 5$
 H_1 : The alternative hypothesis

Accepting/rejecting H₀

Depending on the realization of the random sample we accept or reject H_0 .

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Errors

Type 1

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Errors

Type 1

Rejection of H_0 when it is actually true; probability α (significance level)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Errors

Type 1

Rejection of H_0 when it is actually true; probability α (significance level)

Type 2

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Errors

Type 1

Rejection of H_0 when it is actually true; probability α (significance level)

Type 2

Accepting H_0 when it is actually false; probability β

Example 1 (a)

Example 1 (a)

Example 1 (a)

Let $X_1, X_2, \ldots, X_{100}$ IID from exponential distribution $(Exp(\lambda), Exp(\beta))$. We want to test $H_0: \lambda = 1$ vs. $H_1: \lambda \neq 1$

Note: Under H₀ (if H₀ is true):

Example 1 (a)

• Note: Under
$$H_0$$
 (if H_0 is true): $\mu_X = E(X_i) = \frac{1}{\lambda} = \beta = 1$,

Example 1 (a)

• Note: Under
$$H_0$$
 (if H_0 is true): $\mu_X = E(X_i) = \frac{1}{\lambda} = \beta = 1$,
 $\sigma_X^2 = V(X_i) = \frac{1}{\lambda^2} = 1$.

Example 1 (a)

- Note: Under H_0 (if H_0 is true): $\mu_X = E(X_i) = \frac{1}{\lambda} = \beta = 1$, $\sigma_X^2 = V(X_i) = \frac{1}{\lambda^2} = 1$.
- We decide to accept H_0 if $\sum_{i=1}^n X_i \in [95, 100]$ this is acceptance region

Example 1 (a)

- Note: Under H_0 (if H_0 is true): $\mu_X = E(X_i) = \frac{1}{\lambda} = \beta = 1$, $\sigma_X^2 = V(X_i) = \frac{1}{\lambda^2} = 1$.
- We decide to accept H_0 if $\sum_{i=1}^n X_i \in [95, 100]$ this is acceptance region (notice that $E(\sum_{i=1}^n X_i) = 100$ under H_0)

Example 1 (a)

- Note: Under H_0 (if H_0 is true): $\mu_X = E(X_i) = \frac{1}{\lambda} = \beta = 1$, $\sigma_X^2 = V(X_i) = \frac{1}{\lambda^2} = 1$.
- We decide to accept H_0 if $\sum_{i=1}^n X_i \in [95, 100]$ this is acceptance region (notice that $E(\sum_{i=1}^n X_i) = 100$ under H_0)
- Task: Calculate the significance level α (probability of rejecting H₀ when it is true)

Example 1 (a)

- Note: Under H_0 (if H_0 is true): $\mu_X = E(X_i) = \frac{1}{\lambda} = \beta = 1$, $\sigma_X^2 = V(X_i) = \frac{1}{\lambda^2} = 1$.
- We decide to accept H_0 if $\sum_{i=1}^n X_i \in [95, 100]$ this is acceptance region (notice that $E(\sum_{i=1}^n X_i) = 100$ under H_0)
- Task: Calculate the significance level α (probability of rejecting H₀ when it is true)

• Solution:
$$Z \stackrel{\text{def}}{=} \frac{\bar{X} - \mu}{\sigma / \sqrt{n}} \approx \mathcal{N}(0, 1)$$
 (CLT)

Example 1 (a)

Let $X_1, X_2, \ldots, X_{100}$ IID from exponential distribution $(Exp(\lambda), Exp(\beta))$. We want to test $H_0: \lambda = 1$ vs. $H_1: \lambda \neq 1$

- Note: Under H_0 (if H_0 is true): $\mu_X = E(X_i) = \frac{1}{\lambda} = \beta = 1$, $\sigma_X^2 = V(X_i) = \frac{1}{\lambda^2} = 1$.
- We decide to accept H_0 if $\sum_{i=1}^n X_i \in [95, 100]$ this is acceptance region (notice that $E(\sum_{i=1}^n X_i) = 100$ under H_0)
- Task: Calculate the significance level α (probability of rejecting H₀ when it is true)

• Solution:
$$Z \stackrel{\text{def}}{=} \frac{\bar{X} - \mu}{\sigma / \sqrt{n}} \approx \mathcal{N}(0, 1)$$
 (CLT)

• Furthermore: $\sum_{i=1}^{n} X_i \in [95, 105] \Leftrightarrow \bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \in [0.95, 1.05]$

Example 1 (a)

- Note: Under H_0 (if H_0 is true): $\mu_X = E(X_i) = \frac{1}{\lambda} = \beta = 1$, $\sigma_X^2 = V(X_i) = \frac{1}{\lambda^2} = 1$.
- We decide to accept H_0 if $\sum_{i=1}^n X_i \in [95, 100]$ this is acceptance region (notice that $E(\sum_{i=1}^n X_i) = 100$ under H_0)
- Task: Calculate the significance level α (probability of rejecting H₀ when it is true)

• Solution:
$$Z \stackrel{\text{def}}{=} \frac{\bar{X} - \mu}{\sigma / \sqrt{n}} \approx \mathcal{N}(0, 1)$$
 (CLT)

- Furthermore: $\sum_{i=1}^{n} X_i \in [95, 105] \Leftrightarrow \bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \in [0.95, 1.05]$
- Under $H_0: \mu = 1, \sigma = 1 \Rightarrow Z \stackrel{\text{def}}{=} \frac{\bar{X}-1}{1/\sqrt{100}} \approx \mathcal{N}(0, 1)$ and:

Example 1 (a)

- Note: Under H_0 (if H_0 is true): $\mu_X = E(X_i) = \frac{1}{\lambda} = \beta = 1$, $\sigma_X^2 = V(X_i) = \frac{1}{\lambda^2} = 1$.
- We decide to accept H_0 if $\sum_{i=1}^n X_i \in [95, 100]$ this is acceptance region (notice that $E(\sum_{i=1}^n X_i) = 100$ under H_0)
- Task: Calculate the significance level α (probability of rejecting H₀ when it is true)

• Solution:
$$Z \stackrel{\text{def}}{=} \frac{\bar{X} - \mu}{\sigma / \sqrt{n}} \approx \mathcal{N}(0, 1)$$
 (CLT)

- Furthermore: $\sum_{i=1}^{n} X_i \in [95, 105] \Leftrightarrow \bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \in [0.95, 1.05]$
- Under $H_0: \mu = 1, \sigma = 1 \Rightarrow Z \stackrel{\text{def}}{=} \frac{\bar{X}-1}{1/\sqrt{100}} \approx \mathcal{N}(0, 1)$ and:

$$\alpha = P(\sum_{i=1}^{n} X_i < 95) + P(\sum_{i=1}^{n} X_i > 105)$$

Example 1 (a)

- Note: Under H_0 (if H_0 is true): $\mu_X = E(X_i) = \frac{1}{\lambda} = \beta = 1$, $\sigma_X^2 = V(X_i) = \frac{1}{\lambda^2} = 1$.
- We decide to accept H_0 if $\sum_{i=1}^n X_i \in [95, 100]$ this is acceptance region (notice that $E(\sum_{i=1}^n X_i) = 100$ under H_0)
- Task: Calculate the significance level α (probability of rejecting H₀ when it is true)

• Solution:
$$Z \stackrel{\text{def}}{=} \frac{\bar{X} - \mu}{\sigma / \sqrt{n}} \approx \mathcal{N}(0, 1)$$
 (CLT)

- Furthermore: $\sum_{i=1}^{n} X_i \in [95, 105] \Leftrightarrow \bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \in [0.95, 1.05]$
- Under $H_0: \mu = 1, \sigma = 1 \Rightarrow Z \stackrel{\text{def}}{=} \frac{\bar{X}-1}{1/\sqrt{100}} \approx \mathcal{N}(0, 1)$ and:

$$\alpha = P(\sum_{i=1}^{n} X_i < 95) + P(\sum_{i=1}^{n} X_i > 105) = P(\overline{X} < 0.95) + P(\overline{X} > 1.05)$$

Example 1 (a)

Let $X_1, X_2, \ldots, X_{100}$ IID from exponential distribution $(\text{Exp}(\lambda), \text{Exp}(\beta))$. We want to test $H_0: \lambda = 1$ vs. $H_1: \lambda \neq 1$

- Note: Under H_0 (if H_0 is true): $\mu_X = E(X_i) = \frac{1}{\lambda} = \beta = 1$, $\sigma_X^2 = V(X_i) = \frac{1}{\lambda^2} = 1$.
- We decide to accept H_0 if $\sum_{i=1}^n X_i \in [95, 100]$ this is acceptance region (notice that $E(\sum_{i=1}^n X_i) = 100$ under H_0)
- Task: Calculate the significance level α (probability of rejecting H₀ when it is true)

• Solution:
$$Z \stackrel{\text{def}}{=} \frac{\bar{X} - \mu}{\sigma / \sqrt{n}} \approx \mathcal{N}(0, 1)$$
 (CLT)

- Furthermore: $\sum_{i=1}^{n} X_i \in [95, 105] \Leftrightarrow \bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \in [0.95, 1.05]$
- Under $H_0: \mu = 1, \sigma = 1 \Rightarrow Z \stackrel{\text{def}}{=} \frac{\bar{X}-1}{1/\sqrt{100}} \approx \mathcal{N}(0, 1)$ and:

$$\alpha = P(\sum_{i=1}^{n} X_i < 95) + P(\sum_{i=1}^{n} X_i > 105) = P(\overline{X} < 0.95) + P(\overline{X} > 1.05)$$
$$= P(Z = \frac{\overline{X} - 1}{1/\sqrt{100}} < \frac{0.95 - 1}{1/\sqrt{100}}) + P(\overline{Z} > \frac{1.05 - 1}{1/\sqrt{100}})$$

200

Example 1 (a)

Let $X_1, X_2, \ldots, X_{100}$ IID from exponential distribution $(\text{Exp}(\lambda), \text{Exp}(\beta))$. We want to test $H_0: \lambda = 1$ vs. $H_1: \lambda \neq 1$

- Note: Under H_0 (if H_0 is true): $\mu_X = E(X_i) = \frac{1}{\lambda} = \beta = 1$, $\sigma_X^2 = V(X_i) = \frac{1}{\lambda^2} = 1$.
- We decide to accept H_0 if $\sum_{i=1}^n X_i \in [95, 100]$ this is acceptance region (notice that $E(\sum_{i=1}^n X_i) = 100$ under H_0)
- Task: Calculate the significance level α (probability of rejecting H₀ when it is true)

• Solution:
$$Z \stackrel{\text{def}}{=} \frac{\bar{X} - \mu}{\sigma / \sqrt{n}} \approx \mathcal{N}(0, 1)$$
 (CLT)

- Furthermore: $\sum_{i=1}^{n} X_i \in [95, 105] \Leftrightarrow \bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \in [0.95, 1.05]$
- Under $H_0: \mu = 1, \sigma = 1 \Rightarrow Z \stackrel{\text{def}}{=} \frac{\bar{X}-1}{1/\sqrt{100}} \approx \mathcal{N}(0, 1)$ and:

$$\alpha = P(\sum_{i=1}^{n} X_i < 95) + P(\sum_{i=1}^{n} X_i > 105) = P(\overline{X} < 0.95) + P(\overline{X} > 1.05)$$
$$= P(Z = \frac{\overline{X} - 1}{1/\sqrt{100}} < \frac{0.95 - 1}{1/\sqrt{100}}) + P(\overline{Z} > \frac{1.05 - 1}{1/\sqrt{100}}) = 0.6170$$

200

Example 1 (b)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Examples

Example 1 (b)

Let $X_1, X_2, ..., X_{100}$ IID from exponential distribution (Exp(λ). We want to test $H_0: \lambda = 1$ vs. $H_1: \lambda \neq 1$ With significance level of 0.1, for what outcomes of \bar{X} do we accept H_0 ?

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Examples

Example 1 (b)

Let $X_1, X_2, \ldots, X_{100}$ IID from exponential distribution (Exp(λ). We want to test $H_0: \lambda = 1$ vs. $H_1: \lambda \neq 1$ With significance level of 0.1, for what outcomes of \bar{X} do we accept H_0 ?

• Under H_0 (meaning: if H_0 is true):

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Examples

Example 1 (b)

Let $X_1, X_2, \ldots, X_{100}$ IID from exponential distribution (Exp(λ). We want to test $H_0: \lambda = 1$ vs. $H_1: \lambda \neq 1$ With significance level of 0.1, for what outcomes of \bar{X} do we accept H_0 ?

• Under
$$H_0$$
 (meaning: if H_0 is true):
 $\mu_X = E(X_i) = \frac{1}{\lambda} = \beta = 1$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Examples

Example 1 (b)

Let $X_1, X_2, \ldots, X_{100}$ IID from exponential distribution (Exp(λ). We want to test $H_0: \lambda = 1$ vs. $H_1: \lambda \neq 1$ With significance level of 0.1, for what outcomes of \bar{X} do we accept H_0 ?

• Under H_0 (meaning: if H_0 is true): $\mu_X = E(X_i) = \frac{1}{\lambda} = \beta = 1$ $\sigma_X^2 = V(X_i) = \frac{1}{\lambda^2} = 1$,

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Examples

Example 1 (b)

Let $X_1, X_2, \ldots, X_{100}$ IID from exponential distribution (Exp(λ). We want to test $H_0: \lambda = 1$ vs. $H_1: \lambda \neq 1$ With significance level of 0.1, for what outcomes of \bar{X} do we accept H_0 ?

• Under
$$H_0$$
 (meaning: if H_0 is true):
 $\mu_X = E(X_i) = \frac{1}{\lambda} = \beta = 1$ $\sigma_X^2 = V(X_i) = \frac{1}{\lambda^2} = 1$,
 $Z = \frac{\overline{X} - 1}{1/\sqrt{100}} \sim \mathcal{N}(0, 1)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Examples

Example 1 (b)

Let $X_1, X_2, \ldots, X_{100}$ IID from exponential distribution (Exp(λ). We want to test $H_0: \lambda = 1$ vs. $H_1: \lambda \neq 1$ With significance level of 0.1, for what outcomes of \bar{X} do we accept H_0 ?

• Under
$$H_0$$
 (meaning: if H_0 is true):
 $\mu_X = E(X_i) = \frac{1}{\lambda} = \beta = 1$ $\sigma_X^2 = V(X_i) = \frac{1}{\lambda^2} = 1$,
 $Z = \frac{\overline{X} - 1}{1/\sqrt{100}} \sim \mathcal{N}(0, 1)$

• Find *z* such that $P(-z \le Z \le z) = 1 - 0.10 = 0.90$

Example 1 (b)

Let $X_1, X_2, \ldots, X_{100}$ IID from exponential distribution (Exp(λ). We want to test $H_0: \lambda = 1$ vs. $H_1: \lambda \neq 1$ With significance level of 0.1, for what outcomes of \bar{X} do we accept H_0 ?

• Under
$$H_0$$
 (meaning: if H_0 is true):
 $\mu_X = E(X_i) = \frac{1}{\lambda} = \beta = 1$ $\sigma_X^2 = V(X_i) = \frac{1}{\lambda^2} = 1$,
 $Z = \frac{\overline{X} - 1}{1/\sqrt{100}} \sim \mathcal{N}(0, 1)$

• Find z such that
$$P(-z \le Z \le z) = 1 - 0.10 = 0.90$$

Table A3 $\Rightarrow P\left(-1.645 \le \frac{\overline{X}-1}{1/\sqrt{100}} \le 1.645\right) = 0.90$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Examples

Example 1 (b)

Let $X_1, X_2, \ldots, X_{100}$ IID from exponential distribution (Exp(λ). We want to test $H_0: \lambda = 1$ vs. $H_1: \lambda \neq 1$ With significance level of 0.1, for what outcomes of \bar{X} do we accept H_0 ?

• Under
$$H_0$$
 (meaning: if H_0 is true):
 $\mu_X = E(X_i) = \frac{1}{\lambda} = \beta = 1$ $\sigma_X^2 = V(X_i) = \frac{1}{\lambda^2} = 1$,
 $Z = \frac{\overline{X} - 1}{1/\sqrt{100}} \sim \mathcal{N}(0, 1)$

• Find z such that
$$P(-z \le Z \le z) = 1 - 0.10 = 0.90$$

Table A3 $\Rightarrow P\left(-1.645 \le \frac{\overline{X}-1}{1/\sqrt{100}} \le 1.645\right) = 0.90$

$$\Leftrightarrow P\left(-1.645 \le \frac{X-1}{1/\sqrt{100}} \le 1.645\right) = 0.90$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Examples

Example 1 (b)

Let $X_1, X_2, \ldots, X_{100}$ IID from exponential distribution (Exp(λ). We want to test $H_0: \lambda = 1$ vs. $H_1: \lambda \neq 1$ With significance level of 0.1, for what outcomes of \bar{X} do we accept H_0 ?

• Under
$$H_0$$
 (meaning: if H_0 is true):
 $\mu_X = E(X_i) = \frac{1}{\lambda} = \beta = 1$ $\sigma_X^2 = V(X_i) = \frac{1}{\lambda^2} = 1$,
 $Z = \frac{\overline{X} - 1}{1/\sqrt{100}} \sim \mathcal{N}(0, 1)$

• Find z such that
$$P(-z \le Z \le z) = 1 - 0.10 = 0.90$$

Table A3 $\Rightarrow P\left(-1.645 \le \frac{\overline{X}-1}{1/\sqrt{100}} \le 1.645\right) = 0.90$

$$\Leftrightarrow P\left(-1.645 \le \frac{\bar{\chi}_{-1}}{1/\sqrt{100}} \le 1.645\right) = 0.90$$

 $\Leftrightarrow P(\bar{X} \in [0.83555, 1.1645]) = 0.90$

Example 1 (b)

Let $X_1, X_2, \ldots, X_{100}$ IID from exponential distribution (Exp(λ). We want to test $H_0: \lambda = 1$ vs. $H_1: \lambda \neq 1$ With significance level of 0.1, for what outcomes of \bar{X} do we accept H_0 ?

• Under
$$H_0$$
 (meaning: if H_0 is true):
 $\mu_X = E(X_i) = \frac{1}{\lambda} = \beta = 1$ $\sigma_X^2 = V(X_i) = \frac{1}{\lambda^2} = 1$,
 $Z = \frac{\overline{X} - 1}{1/\sqrt{100}} \sim \mathcal{N}(0, 1)$

• Find z such that
$$P(-z \le Z \le z) = 1 - 0.10 = 0.90$$

Table A3 $\Rightarrow P\left(-1.645 \le \frac{\overline{X}-1}{1/\sqrt{100}} \le 1.645\right) = 0.90$

$$\Leftrightarrow P\left(-1.645 \le \frac{\bar{\chi}_{-1}}{1/\sqrt{100}} \le 1.645\right) = 0.90$$

 $\Leftrightarrow P(\bar{X} \in [0.83555, 1.1645]) = 0.90$

Acceptance region for H_0 : $\lambda = 1$ is [0.83555, 1.1645]

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Examples

Example 1 (b)

Let $X_1, X_2, \ldots, X_{100}$ IID from exponential distribution (Exp(λ). We want to test $H_0: \lambda = 1$ vs. $H_1: \lambda \neq 1$ With significance level of 0.1, for what outcomes of \bar{X} do we accept H_0 ?

Under
$$H_0$$
 (meaning: if H_0 is true):
 $\mu_X = E(X_i) = \frac{1}{\lambda} = \beta = 1$ $\sigma_X^2 = V(X_i) = \frac{1}{\lambda^2} = 1$,
 $Z = \frac{\overline{X} - 1}{1/\sqrt{100}} \sim \mathcal{N}(0, 1)$

• Find z such that
$$P(-z \le Z \le z) = 1 - 0.10 = 0.90$$

Table A3 $\Rightarrow P\left(-1.645 \le \frac{\overline{X}-1}{1/\sqrt{100}} \le 1.645\right) = 0.90$

$$\Leftrightarrow P\left(-1.645 \le \frac{\bar{\chi}_{-1}}{1/\sqrt{100}} \le 1.645\right) = 0.90$$

 $\Leftrightarrow P(\bar{X} \in [0.83555, 1.1645]) = 0.90$

Acceptance region for H_0 : $\lambda = 1$ is [0.83555, 1.1645] Critical region for H_0 : All other outcomes for \overline{X}

Example 1 (c)

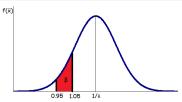
Let $X_1, X_2, \ldots, X_{100}$ IID from exponential distribution $(\text{Exp}(\lambda), \text{Exp}(\beta))$. Calculate β if in fact $\lambda = 0.85$

Example 1 (c)

Let $X_1, X_2, \ldots, X_{100}$ IID from exponential distribution $(\text{Exp}(\lambda), \text{Exp}(\beta))$. Calculate β if in fact $\lambda = 0.85$ In order to be able to calculate β we need a concrete value for the alternative hypothesis. Just $\lambda \neq 1$ is not enough

Example 1 (c)

Let $X_1, X_2, \ldots, X_{100}$ IID from exponential distribution $(\text{Exp}(\lambda), \text{Exp}(\beta))$. Calculate β if in fact $\lambda = 0.85$ In order to be able to calculate β we need a concrete value for the alternative hypothesis. Just $\lambda \neq 1$ is not enough



We accept H_0 if $\bar{x} \in [0.95, 1.05]$

Example 1 (c)

Let $X_1, X_2, \ldots, X_{100}$ IID from exponential distribution $(\text{Exp}(\lambda), \text{Exp}(\beta))$. Calculate β if in fact $\lambda = 0.85$ In order to be able to calculate β we need a concrete value for the alternative hypothesis. Just $\lambda \neq 1$ is not enough

Example 1 (c)

Let $X_1, X_2, \ldots, X_{100}$ IID from exponential distribution $(\text{Exp}(\lambda), \text{Exp}(\beta))$. Calculate β if in fact $\lambda = 0.85$ In order to be able to calculate β we need a concrete value for the alternative hypothesis. Just $\lambda \neq 1$ is not enough

•
$$\mu = E(X_i) = \frac{1}{\lambda} = \frac{1}{0.85}, \, \sigma^2 = V(X_i) = \frac{1}{\lambda^2} = \frac{1}{0.85^2}$$

Example 1 (c)

Let $X_1, X_2, \ldots, X_{100}$ IID from exponential distribution $(\text{Exp}(\lambda), \text{Exp}(\beta))$. Calculate β if in fact $\lambda = 0.85$ In order to be able to calculate β we need a concrete value for the alternative hypothesis. Just $\lambda \neq 1$ is not enough

•
$$\mu = E(X_i) = \frac{1}{\lambda} = \frac{1}{0.85}, \sigma^2 = V(X_i) = \frac{1}{\lambda^2} = \frac{1}{0.85^2}$$

 $Z = \frac{\overline{X} - \mu}{\sigma/\sqrt{n}} = \frac{\overline{X} - 1/0.85}{\frac{1/0.85}{\sqrt{100}}} \approx \mathcal{N}(0, 1) \text{ (CLT)}$

Example 1 (c)

Let $X_1, X_2, \ldots, X_{100}$ IID from exponential distribution $(\text{Exp}(\lambda), \text{Exp}(\beta))$. Calculate β if in fact $\lambda = 0.85$ In order to be able to calculate β we need a concrete value for the alternative hypothesis. Just $\lambda \neq 1$ is not enough

•
$$\mu = E(X_i) = \frac{1}{\lambda} = \frac{1}{0.85}, \sigma^2 = V(X_i) = \frac{1}{\lambda^2} = \frac{1}{0.85^2}$$

 $Z = \frac{\overline{X} - \mu}{\sigma/\sqrt{n}} = \frac{\overline{X} - 1/0.85}{\frac{1/0.85}{\sqrt{100}}} \overset{\text{approx}}{\sim} \mathcal{N}(0, 1) \text{ (CLT)}$
• $\beta = P(95 \le \sum_{i=1}^{n} X_i \le 105)$

Example 1 (c)

Let $X_1, X_2, \ldots, X_{100}$ IID from exponential distribution $(\text{Exp}(\lambda), \text{Exp}(\beta))$. Calculate β if in fact $\lambda = 0.85$ In order to be able to calculate β we need a concrete value for the alternative hypothesis. Just $\lambda \neq 1$ is not enough

•
$$\mu = E(X_i) = \frac{1}{\lambda} = \frac{1}{0.85}, \sigma^2 = V(X_i) = \frac{1}{\lambda^2} = \frac{1}{0.85^2}$$

 $Z = \frac{\overline{X} - \mu}{\sigma/\sqrt{n}} = \frac{\overline{X} - 1/0.85}{\frac{1}{\sqrt{100}}} \stackrel{\text{approx}}{\sim} \mathcal{N}(0, 1) \text{ (CLT)}$
• $\beta = P\left(95 \le \sum_{i=1}^{n} X_i \le 105\right) = P(0.95 \le \overline{X} \le 1.05)$

Example 1 (c)

Let $X_1, X_2, \ldots, X_{100}$ IID from exponential distribution $(\text{Exp}(\lambda), \text{Exp}(\beta))$. Calculate β if in fact $\lambda = 0.85$ In order to be able to calculate β we need a concrete value for the alternative hypothesis. Just $\lambda \neq 1$ is not enough

•
$$\mu = E(X_i) = \frac{1}{\lambda} = \frac{1}{0.85}, \sigma^2 = V(X_i) = \frac{1}{\lambda^2} = \frac{1}{0.85^2}$$

 $Z = \frac{\overline{X} - \mu}{\sigma/\sqrt{n}} = \frac{\overline{X} - 1/0.85}{\frac{1/0.85}{\sqrt{100}}} \stackrel{\text{approx}}{\sim} \mathcal{N}(0, 1) \text{ (CLT)}$
• $\beta = P(95 \le \sum_{i=1}^{n} X_i \le 105) = P(0.95 \le \overline{X} \le 1.05)$
 $= P\left(\frac{0.95 - 1/0.85}{\frac{1}{0.85}\sqrt{100}} \le Z \le \frac{1.05 - 1/0.85}{\frac{1}{0.85}\sqrt{100}}\right)$

Example 1 (c)

Let $X_1, X_2, \ldots, X_{100}$ IID from exponential distribution $(\text{Exp}(\lambda), \text{Exp}(\beta))$. Calculate β if in fact $\lambda = 0.85$ In order to be able to calculate β we need a concrete value for the alternative hypothesis. Just $\lambda \neq 1$ is not enough

•
$$\mu = E(X_i) = \frac{1}{\lambda} = \frac{1}{0.85}, \sigma^2 = V(X_i) = \frac{1}{\lambda^2} = \frac{1}{0.85^2}$$

 $Z = \frac{\overline{X} - \mu}{\sigma/\sqrt{n}} = \frac{\overline{X} - 1/0.85}{\frac{1/0.85}{\sqrt{100}}} \approx \mathcal{N}(0, 1) \text{ (CLT)}$
• $\beta = P\left(95 \le \sum_{i=1}^{n} X_i \le 105\right) = P(0.95 \le \overline{X} \le 1.05)$
 $= P\left(\frac{0.95 - 1/0.85}{\frac{1}{0.85}\sqrt{100}} \le Z \le \frac{1.05 - 1/0.85}{\frac{1}{0.85}\sqrt{100}}\right) = P(-1.925 \le Z \le -1.075)$

Example 1 (c)

Let $X_1, X_2, \ldots, X_{100}$ IID from exponential distribution $(\text{Exp}(\lambda), \text{Exp}(\beta))$. Calculate β if in fact $\lambda = 0.85$ In order to be able to calculate β we need a concrete value for the alternative hypothesis. Just $\lambda \neq 1$ is not enough

•
$$\mu = E(X_i) = \frac{1}{\lambda} = \frac{1}{0.85}, \sigma^2 = V(X_i) = \frac{1}{\lambda^2} = \frac{1}{0.85^2}$$

 $Z = \frac{\overline{X} - \mu}{\sigma/\sqrt{n}} = \frac{\overline{X} - 1/0.85}{\frac{1/0.85}{\sqrt{100}}} \stackrel{\text{approx}}{\sim} \mathcal{N}(0, 1) \text{ (CLT)}$
• $\beta = P \left(95 \le \sum_{i=1}^{n} X_i \le 105\right) = P(0.95 \le \overline{X} \le 1.05)$
 $= P \left(\frac{0.95 - 1/0.85}{\frac{1}{0.85} \sqrt{100}} \le Z \le \frac{1.05 - 1/0.85}{\frac{1}{0.85} \sqrt{100}}\right) = P(-1.925 \le Z \le -1.075)$
 $= 0.1412 - 0.0271$

Example 1 (c)

Let $X_1, X_2, \ldots, X_{100}$ IID from exponential distribution $(\text{Exp}(\lambda), \text{Exp}(\beta))$. Calculate β if in fact $\lambda = 0.85$ In order to be able to calculate β we need a concrete value for the alternative hypothesis. Just $\lambda \neq 1$ is not enough

•
$$\mu = E(X_i) = \frac{1}{\lambda} = \frac{1}{0.85}, \sigma^2 = V(X_i) = \frac{1}{\lambda^2} = \frac{1}{0.85^2}$$

 $Z = \frac{\overline{X} - \mu}{\sigma/\sqrt{n}} = \frac{\overline{X} - 1/0.85}{\frac{1/0.85}{\sqrt{100}}} \approx \mathcal{N}(0, 1) \text{ (CLT)}$
• $\beta = P\left(95 \le \sum_{i=1}^{n} X_i \le 105\right) = P(0.95 \le \overline{X} \le 1.05)$
 $= P\left(\frac{0.95 - 1/0.85}{\frac{1}{0.85}\sqrt{100}} \le Z \le \frac{1.05 - 1/0.85}{\frac{1}{0.85}\sqrt{100}}\right) = P(-1.925 \le Z \le -1.075)$
 $= 0.1412 - 0.0271 = 0.1141$

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

Examples

Example 1 (d)

Let $X_1, X_2, \ldots, X_{100}$ IID from exponential distribution (Exp(λ), Exp(β)). We found $\overline{X} = 1.15$. For what levels of significance do we accept $H_0 : \lambda = 1$?

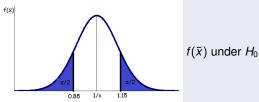
Examples

Example 1 (d)

Let $X_1, X_2, ..., X_{100}$ IID from exponential distribution (Exp(λ), Exp(β)). We found $\overline{X} = 1.15$. For what levels of significance do we accept $H_0 : \lambda = 1$? We calculate a significance level such that $\overline{X} = 1.15$ would just be accepted or just be rejected. This significance level is called the *P*-value

Example 1 (d)

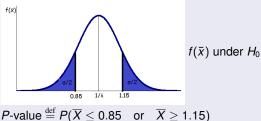
Let $X_1, X_2, \ldots, X_{100}$ IID from exponential distribution $(\text{Exp}(\lambda), \text{Exp}(\beta))$. We found $\overline{X} = 1.15$. For what levels of significance do we accept $H_0 : \lambda = 1$? We calculate a significance level such that $\overline{X} = 1.15$ would just be accepted or just be rejected. This significance level is called the *P*-value $H_0 = 1$ vs. $H_1 : \lambda \neq 1$



Examples

Example 1 (d)

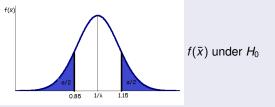
Let $X_1, X_2, \ldots, X_{100}$ IID from exponential distribution $(\text{Exp}(\lambda), \text{Exp}(\beta))$. We found $\overline{X} = 1.15$. For what levels of significance do we accept $H_0 : \lambda = 1$? We calculate a significance level such that $\overline{X} = 1.15$ would just be accepted or just be rejected. This significance level is called the *P*-value $H_0 = 1$ vs. $H_1 : \lambda \neq 1$



Examples

Example 1 (d)

Let $X_1, X_2, \ldots, X_{100}$ IID from exponential distribution $(\text{Exp}(\lambda), \text{Exp}(\beta))$. We found $\overline{X} = 1.15$. For what levels of significance do we accept $H_0 : \lambda = 1$? We calculate a significance level such that $\overline{X} = 1.15$ would just be accepted or just be rejected. This significance level is called the *P*-value $H_0 = 1$ vs. $H_1 : \lambda \neq 1$

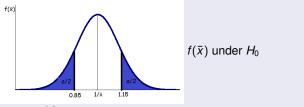


P-value $\stackrel{\text{def}}{=} P(\overline{X} \le 0.85 \text{ or } \overline{X} \ge 1.15) = 2 P(\overline{X} \le 0.85)$

Examples

Example 1 (d)

Let $X_1, X_2, \ldots, X_{100}$ IID from exponential distribution $(\text{Exp}(\lambda), \text{Exp}(\beta))$. We found $\overline{X} = 1.15$. For what levels of significance do we accept $H_0 : \lambda = 1$? We calculate a significance level such that $\overline{X} = 1.15$ would just be accepted or just be rejected. This significance level is called the *P*-value $H_0 = 1$ vs. $H_1 : \lambda \neq 1$

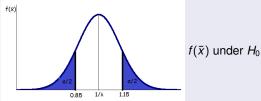


 $P\text{-value} \stackrel{\text{def}}{=} P(\overline{X} \le 0.85 \quad \text{or} \quad \overline{X} \ge 1.15) = 2 P(\overline{X} \le 0.85) = 2 P(Z \le \frac{0.85-1}{1/\sqrt{100}})$

Examples

Example 1 (d)

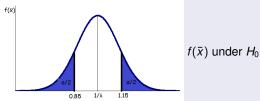
Let $X_1, X_2, \ldots, X_{100}$ IID from exponential distribution (Exp(λ), Exp(β)). We found $\overline{X} = 1.15$. For what levels of significance do we accept $H_0 : \lambda = 1$? We calculate a significance level such that $\overline{X} = 1.15$ would just be accepted or just be rejected. This significance level is called the *P*-value $H_0 = 1$ vs. $H_1 : \lambda \neq 1$



 $\begin{array}{l} P\text{-value} \stackrel{\text{def}}{=} P(\overline{X} \leq 0.85 \quad \text{or} \quad \overline{X} \geq 1.15) = 2 \ P(\overline{X} \leq 0.85) = 2 \ P(Z \leq \frac{0.85 - 1}{1/\sqrt{100}}) \\ 2 \cdot P(Z \leq -1.5) = 2 \cdot 0.0668 = 0.1336 \end{array}$

Example 1 (d)

Let $X_1, X_2, \ldots, X_{100}$ IID from exponential distribution (Exp(λ), Exp(β)). We found $\overline{X} = 1.15$. For what levels of significance do we accept $H_0 : \lambda = 1$? We calculate a significance level such that $\overline{X} = 1.15$ would just be accepted or just be rejected. This significance level is called the *P*-value $H_0 = 1$ vs. $H_1 : \lambda \neq 1$

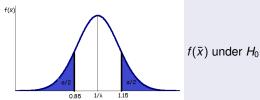


 $\begin{array}{l} P\text{-value} \stackrel{\text{def}}{=} P(\overline{X} \leq 0.85 \quad \text{or} \quad \overline{X} \geq 1.15) = 2 \ P(\overline{X} \leq 0.85) = 2 \ P(Z \leq \frac{0.85 - 1}{1/\sqrt{100}}) \\ 2 \cdot P(Z \leq -1.5) = 2 \cdot 0.0668 = 0.1336 \\ \text{So, there is a probability of } 0.1336 \ \text{that } \overline{X} \ \text{differs at least } 0.15 \ \text{from } \mu. \end{array}$

・ロト・日本・日本・日本・日本

Example 1 (d)

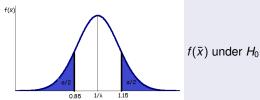
Let $X_1, X_2, \ldots, X_{100}$ IID from exponential distribution (Exp(λ), Exp(β)). We found $\overline{X} = 1.15$. For what levels of significance do we accept $H_0 : \lambda = 1$? We calculate a significance level such that $\overline{X} = 1.15$ would just be accepted or just be rejected. This significance level is called the *P*-value $H_0 = 1$ vs. $H_1 : \lambda \neq 1$



 $\begin{array}{l} P\text{-value} \stackrel{\text{def}}{=} P(\overline{X} \leq 0.85 \quad \text{or} \quad \overline{X} \geq 1.15) = 2 \ P(\overline{X} \leq 0.85) = 2 \ P(Z \leq \frac{0.85-1}{1/\sqrt{100}}) \\ 2 \cdot P(Z \leq -1.5) = 2 \cdot 0.0668 = 0.1336 \\ \text{So, there is a probability of } 0.1336 \ \text{that } \overline{X} \ \text{differs at least } 0.15 \ \text{from } \mu. \\ \text{What is the conclusion from this observation regarding } H_0? \end{array}$

Example 1 (d)

Let $X_1, X_2, \ldots, X_{100}$ IID from exponential distribution (Exp(λ), Exp(β)). We found $\overline{X} = 1.15$. For what levels of significance do we accept $H_0 : \lambda = 1$? We calculate a significance level such that $\overline{X} = 1.15$ would just be accepted or just be rejected. This significance level is called the *P*-value $H_0 = 1$ vs. $H_1 : \lambda \neq 1$



 $\begin{array}{l} P\text{-value} \stackrel{\text{def}}{=} P(\overline{X} \leq 0.85 \quad \text{or} \quad \overline{X} \geq 1.15) = 2 \ P(\overline{X} \leq 0.85) = 2 \ P(Z \leq \frac{0.85-1}{1/\sqrt{100}}) \\ 2 \cdot P(Z \leq -1.5) = 2 \cdot 0.0668 = 0.1336 \\ \text{So, there is a probability of } 0.1336 \ \text{that } \overline{X} \ \text{differs at least } 0.15 \ \text{from } \mu. \\ \text{What is the conclusion from this observation regarding } H_0? \end{array}$

P-value: The highest α such that H_0 is accepted and the lowest α such that H_0 is rejected.

One-sided vs. two-sided tests

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

One-sided vs. two-sided tests

So far: H_0 : $\mu = x$ vs. H_1 : $\mu \neq x$ (so-called two-sided tests)

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ●

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Two-sided tests vs. one-sided tests

One-sided vs. two-sided tests

So far: $H_0: \mu = x$ vs. $H_1: \mu \neq x$ (so-called two-sided tests) Now: $H_0: \mu = x$ vs. $H_1: \mu > x$ or $H_1: \mu < x$ (so-called one-sided tests)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Two-sided tests vs. one-sided tests

One-sided vs. two-sided tests

So far: $H_0: \mu = x$ vs. $H_1: \mu \neq x$ (so-called two-sided tests) Now: $H_0: \mu = x$ vs. $H_1: \mu > x$ or $H_1: \mu < x$ (so-called one-sided tests) Same as $H_0: \mu \ge x$ vs. $H_1: \mu < x$, or $H_0: \mu \le x$ vs. $H_1: \mu > x$

Two-sided tests vs. one-sided tests

One-sided vs. two-sided tests

Two-sided tests vs. one-sided tests

One-sided vs. two-sided tests

•
$$H_o: \mu \geq x$$

Two-sided tests vs. one-sided tests

One-sided vs. two-sided tests

- $H_o: \mu \geq x$
- Acceptance region: $\bar{X} \ge y$

Two-sided tests vs. one-sided tests

One-sided vs. two-sided tests

- $H_o: \mu \ge x$
- Acceptance region: $\bar{X} \ge y$
- Significance level: $\alpha = P(\overline{X} \le y)$

Two-sided tests vs. one-sided tests

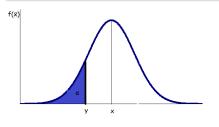
One-sided vs. two-sided tests

- $H_o: \mu \ge x$
- Acceptance region: $\bar{X} \ge y$
- Significance level: $\alpha = P(\overline{X} \le y)$
- P-value also one-sided

Two-sided tests vs. one-sided tests

One-sided vs. two-sided tests

- $H_o: \mu \ge x$
- Acceptance region: $\bar{X} \ge y$
- Significance level: $\alpha = P(\overline{X} \le y)$
- P-value also one-sided



Example 2 (a)

- ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Example 2 (a)

 $X_1, \ldots, X_5 \sim \operatorname{Exp}(\lambda), \operatorname{IID}, \lambda$ unknown

Example 2 (a)

 $X_1, \ldots, X_5 \sim \operatorname{Exp}(\lambda), \operatorname{IID}, \lambda \operatorname{unknown}$ $H_0: \lambda = 2 \text{ vs. } H_1: \lambda > 2$

◆□ > ◆□ > ◆三 > ◆三 > ・三 ・ のへぐ

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Two-sided tests vs. one-sided tests

Example 2 (a)

 $X_1, \ldots, X_5 \sim \operatorname{Exp}(\lambda), \operatorname{IID}, \lambda$ unknown $H_0: \lambda = 2 \text{ vs. } H_1: \lambda > 2$ So under $H_0: \mu = E(X_i) = \frac{1}{2}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Two-sided tests vs. one-sided tests

Example 2 (a)

 $X_1, \ldots, X_5 \sim \operatorname{Exp}(\lambda)$, IID, λ unknown $H_0: \lambda = 2 \text{ vs. } H_1: \lambda > 2$ So under $H_0: \mu = E(X_i) = \frac{1}{2}$ Assume that we decide to accept H_0 if $\bar{X} > 0.45$; calculate α

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Two-sided tests vs. one-sided tests

Example 2 (a)

 $X_1, \ldots, X_5 \sim \operatorname{Exp}(\lambda)$, IID, λ unknown $H_0: \lambda = 2 \text{ vs. } H_1: \lambda > 2$ So under $H_0: \mu = E(X_i) = \frac{1}{2}$ Assume that we decide to accept H_0 if $\bar{X} > 0.45$; calculate α

•
$$\bar{X} > 0.45 \Leftrightarrow \sum_{i=1}^{5} X_i > 5 \cdot 0.45 = 2.25$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Example 2 (a)

 $\begin{array}{l} X_1,\ldots,\,X_5\sim \mathrm{Exp}(\lambda),\,\mathrm{IID},\,\lambda \text{ unknown}\\ H_0:\,\lambda=2 \text{ vs. } H_1:\,\lambda>2\\ \mathrm{So \ under } H_0:\,\mu=E(X_i)=\frac{1}{2}\\ \mathrm{Assume \ that \ we \ decide \ to \ accept \ } H_0 \ \text{if } \ \bar{X}>0.45; \ \text{calculate } \alpha \end{array}$

•
$$\bar{X} > 0.45 \Leftrightarrow \sum_{i=1}^{5} X_i > 5 \cdot 0.45 = 2.25$$

Let $Y = \sum_{i=1}^{5} X_i$ (sum of independent exponentially distributed RV's)

Example 2 (a)

 $X_1, \ldots, X_5 \sim \operatorname{Exp}(\lambda)$, IID, λ unknown $H_0: \lambda = 2 \text{ vs. } H_1: \lambda > 2$ So under $H_0: \mu = E(X_i) = \frac{1}{2}$ Assume that we decide to accept H_0 if $\bar{X} > 0.45$; calculate α • $\bar{X} > 0.45 \Leftrightarrow \sum_{i=1}^5 X_i > 5 \cdot 0.45 = 2.25$ Let $Y = \sum_{i=1}^5 X_i$ (sum of independent exponentially distributed RV's)

 \Rightarrow Y ~ Erl($\lambda = 2, n = 5$) (under H₀),

Example 2 (a)

 $X_1, \ldots, X_5 \sim \operatorname{Exp}(\lambda)$, IID, λ unknown $H_0: \lambda = 2 \text{ vs. } H_1: \lambda > 2$ So under $H_0: \mu = E(X_i) = \frac{1}{2}$ Assume that we decide to accept H_0 if $\overline{X} > 0.45$; calculate α

• $\bar{X} > 0.45 \Leftrightarrow \sum_{i=1}^{5} X_i > 5 \cdot 0.45 = 2.25$ Let $Y = \sum_{i=1}^{5} X_i$ (sum of independent exponentially distributed RV's)

$$\Rightarrow Y \sim \text{Erl}(\lambda = 2, n = 5) \text{ (under } H_0\text{)}, E(Y) = 5/2$$

• Apparently:

Example 2 (a)

 $X_1, \ldots, X_5 \sim \operatorname{Exp}(\lambda)$, IID, λ unknown $H_0: \lambda = 2 \text{ vs. } H_1: \lambda > 2$ So under $H_0: \mu = E(X_i) = \frac{1}{2}$ Assume that we decide to accept H_0 if $\overline{X} > 0.45$; calculate α

• $\bar{X} > 0.45 \Leftrightarrow \sum_{i=1}^{5} X_i > 5 \cdot 0.45 = 2.25$ Let $Y = \sum_{i=1}^{5} X_i$ (sum of independent exponentially distributed RV's)

$$\Rightarrow Y \sim \text{Erl}(\lambda = 2, n = 5) \text{ (under } H_0\text{)}, E(Y) = 5/2$$

• Apparently:
$$\alpha = P(Y \le 2.25)$$

Example 2 (a)

 $X_1, \ldots, X_5 \sim \operatorname{Exp}(\lambda)$, IID, λ unknown $H_0: \lambda = 2 \text{ vs. } H_1: \lambda > 2$ So under $H_0: \mu = E(X_i) = \frac{1}{2}$ Assume that we decide to accept H_0 if $\overline{X} > 0.45$; calculate α

• $\bar{X} > 0.45 \Leftrightarrow \sum_{i=1}^{5} X_i > 5 \cdot 0.45 = 2.25$ Let $Y = \sum_{i=1}^{5} X_i$ (sum of independent exponentially distributed RV's)

$$\Rightarrow Y \sim \text{Erl}(\lambda = 2, n = 5) \text{ (under } H_0\text{)}, E(Y) = 5/2$$

• Apparently: $\alpha = P(Y \le 2.25) = \int_0^{2.25} \frac{\lambda^n x^{n-1}}{(n-1)!} \exp(-\lambda x) dx$

Example 2 (a)

 $X_1, \ldots, X_5 \sim \operatorname{Exp}(\lambda), \text{ IID, } \lambda \text{ unknown}$ $H_0: \lambda = 2 \text{ vs. } H_1: \lambda > 2$ So under $H_0: \mu = E(X_i) = \frac{1}{2}$ Assume that we decide to accept H_0 if $\bar{X} > 0.45$; calculate α $\bar{X} > 0.45 \Leftrightarrow \sum_{i=1}^{5} X_i > 5 \cdot 0.45 = 2.25$

Let $Y = \sum_{i=1}^{5} X_i$ (sum of independent exponentially distributed RV's)

$$\Rightarrow Y \sim \operatorname{Erl}(\lambda = 2, n = 5) \text{ (under } H_0\text{)}, E(Y) = 5/2$$

• Apparently:
$$\alpha = P(Y \le 2.25) = \int_0^{2.25} \frac{\lambda^n x^{n-1}}{(n-1)!} \exp(-\lambda x) dx = \int_0^{2.25} \frac{2^5 x^4}{4!} \exp(-2x) dx = \frac{4}{3} \int_0^{2.25} x^4 \exp(-2x) dx$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Example 2 (a)

 $\begin{array}{l} X_1, \ldots, X_5 \sim \operatorname{Exp}(\lambda), \text{ IID}, \lambda \text{ unknown} \\ H_0: \lambda = 2 \text{ vs. } H_1: \lambda > 2 \\ \text{So under } H_0: \mu = E(X_i) = \frac{1}{2} \\ \text{Assume that we decide to accept } H_0 \text{ if } \bar{X} > 0.45; \text{ calculate } \alpha \\ \bullet \ \bar{X} > 0.45 \Leftrightarrow \sum_{i=1}^5 X_i > 5 \cdot 0.45 = 2.25 \end{array}$

Let $Y = \sum_{i=1}^{5} X_i$ (sum of independent exponentially distributed RV's)

$$\Rightarrow Y \sim \operatorname{Erl}(\lambda = 2, n = 5) \text{ (under } H_0\text{)}, E(Y) = 5/2$$

• Apparently: $\alpha = P(Y \le 2.25) = \int_0^{2.25} \frac{\lambda^n x^{n-1}}{(n-1)!} \exp(-\lambda x) dx = \int_0^{2.25} \frac{2^5 x^4}{4!} \exp(-2x) dx = \frac{4}{3} \int_0^{2.25} x^4 \exp(-2x) dx = \dots \approx 0.4679$

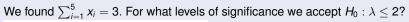
▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

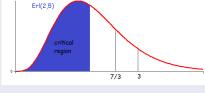
Two-sided tests vs. one-sided tests

Example 2 (b)

We found $\sum_{i=1}^{5} x_i = 3$. For what levels of significance we accept $H_0: \lambda \leq 2$?

Example 2 (b)



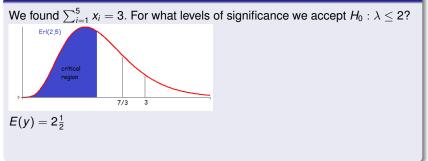


◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ●

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

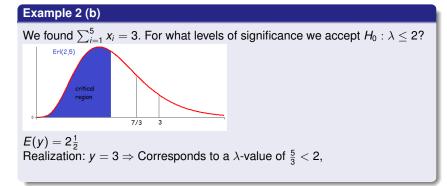
Two-sided tests vs. one-sided tests

Example 2 (b)



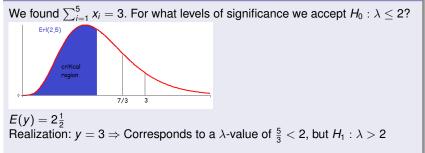
< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Two-sided tests vs. one-sided tests



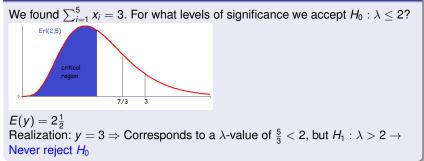
< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

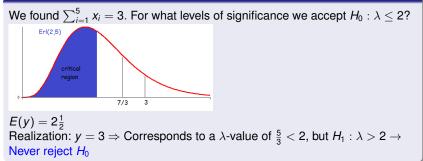
Two-sided tests vs. one-sided tests



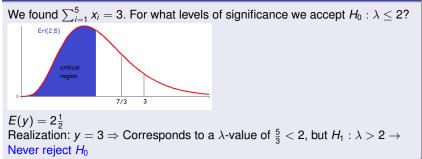
< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Two-sided tests vs. one-sided tests



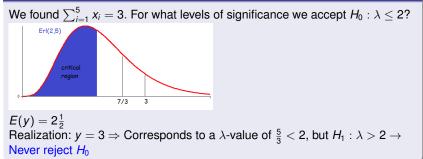


Example 2 (c)



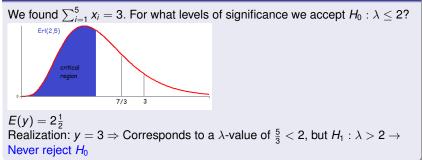
Example 2 (c)

Suppose
$$y = \sum_{i=1}^{5} x_i = 2$$



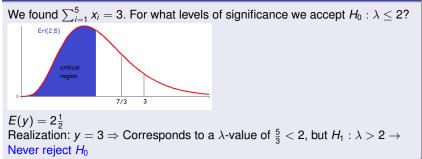
Example 2 (c)

Suppose
$$y = \sum_{i=1}^{5} x_i = 2 < 2.5$$



Example 2 (c)

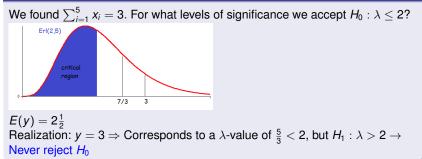
Suppose $y = \sum_{i=1}^{5} x_i = 2 < 2.5$ For what α do we accept H_0 (i.e., what is the *P*-value for y = 2?)



Example 2 (c)

Suppose $y = \sum_{i=1}^{5} x_i = 2 < 2.5$ For what α do we accept H_0 (i.e., what is the *P*-value for y = 2?)

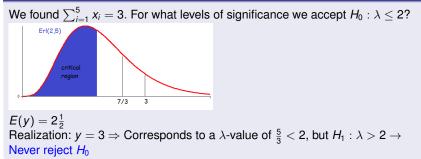
• P-value:
$$P(Y \le 2|H_0 \text{ is true})$$



Example 2 (c)

Suppose $y = \sum_{i=1}^{5} x_i = 2 < 2.5$ For what α do we accept H_0 (i.e., what is the *P*-value for y = 2?)

• P-value: $P(Y \le 2|H_0 \text{ is true}) = P(Y \le 2|Y \sim Erl(\lambda = 2, n = 5))$



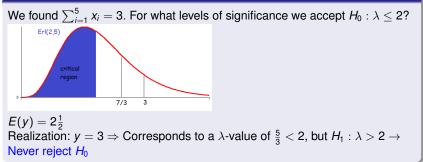
Example 2 (c)

Suppose $y = \sum_{i=1}^{5} x_i = 2 < 2.5$ For what α do we accept H_0 (i.e., what is the *P*-value for y = 2?)

• P-value:
$$P(Y \le 2|H_0 \text{ is true}) = P(Y \le 2|Y \sim \text{Erl}(\lambda = 2, n = 5))$$

= $\frac{4}{3} \int_0^2 x^4 \exp(-2x) dx$

Example 2 (b)



Example 2 (c)

Suppose $y = \sum_{i=1}^{5} x_i = 2 < 2.5$ For what α do we accept H_0 (i.e., what is the *P*-value for y = 2?)

• P-value:
$$P(Y \le 2|H_0 \text{ is true}) = P(Y \le 2|Y \sim \text{Erl}(\lambda = 2, n = 5))$$

= $\frac{4}{3} \int_0^2 x^4 \exp(-2x) dx = \ldots = 1 - 34 \cdot \frac{1}{3} \cdot \exp(-4) = 0.3712$
(probably accept H_0)