Lecture 17: Examples in hypothesis testing

Kateřina Staňková

Statistics (MAT1003)

May 22, 2012

Outline

- Revision of basics
- 2 Revision of two-sided tests vs. one-sided tests
- Many exercises

book: Chapter 10

And now ...

- Revision of basics
- 2 Revision of two-sided tests vs. one-sided tests
- Many exercises

Revision of basics

Outcome of the hypothesis testing				
	H_0 is true	H_0 is false		
Do not reject H ₀	Correct decision	Type II Error (with prob. β)		
Reject H ₀	Type 1 error (with prob. α)	Correct decision		

Many exercises

Outcome of the hypothesis testing						
	H_0 is true	H_0 is false				
Do not reject H ₀	Correct decision	Type II Error (with prob. β)				
Reject H₀	Type 1 error (with prob. α)	Correct decision				

P-value

The highest α such that H_0 is accepted and the lowest α such that H_0 is rejected

And now ...

- Revision of basics
- Revision of two-sided tests vs. one-sided tests
- Many exercises

One-sided vs. two-sided tests					

So far: $H_0: \mu = x$ vs. $H_1: \mu \neq x$ (so-called two-sided tests)

So far: $H_0: \mu = x$ vs. $H_1: \mu \neq x$ (so-called two-sided tests)

Now: $H_0: \mu = x$ vs. $H_1: \mu > x$ or $H_1: \mu < x$ (so-called one-sided tests)

So far: $H_0: \mu = x$ vs. $H_1: \mu \neq x$ (so-called two-sided tests)

Now: $H_0: \mu = x$ vs. $H_1: \mu > x$ or $H_1: \mu < x$ (so-called one-sided tests)

Same as $H_0: \mu \ge x$ vs. $H_1: \mu < x$, or $H_0: \mu \le x$ vs. $H_1: \mu > x$

So far: $H_0: \mu = x$ vs. $H_1: \mu \neq x$ (so-called two-sided tests)

Now: $H_0: \mu = x$ vs. $H_1: \mu > x$ or $H_1: \mu < x$ (so-called one-sided tests)

Same as $H_0: \mu \ge x$ vs. $H_1: \mu < x$, or $H_0: \mu \le x$ vs. $H_1: \mu > x$

So far: $H_0: \mu = x$ vs. $H_1: \mu \neq x$ (so-called two-sided tests)

Now: $H_0: \mu = x$ vs. $H_1: \mu > x$ or $H_1: \mu < x$ (so-called one-sided tests)

Same as $H_0: \mu \ge x$ vs. $H_1: \mu < x$, or $H_0: \mu \le x$ vs. $H_1: \mu > x$

We use one-sided tests for calculation purposes: Given that $\mu=x$ we use CLT and/or probability distributions

• $H_o: \mu \geq x$

So far: $H_0: \mu = x$ vs. $H_1: \mu \neq x$ (so-called two-sided tests)

Now: $H_0: \mu = x$ vs. $H_1: \mu > x$ or $H_1: \mu < x$ (so-called one-sided tests)

Same as $H_0: \mu \ge x$ vs. $H_1: \mu < x$, or $H_0: \mu \le x$ vs. $H_1: \mu > x$

- $H_o: \mu \geq x$
- Acceptance region: $\bar{X} \geq y$

So far: $H_0: \mu = x$ vs. $H_1: \mu \neq x$ (so-called two-sided tests)

Now: $H_0: \mu = x$ vs. $H_1: \mu > x$ or $H_1: \mu < x$ (so-called one-sided tests)

Same as $H_0: \mu \geq x$ vs. $H_1: \mu < x$, or $H_0: \mu \leq x$ vs. $H_1: \mu > x$

- $H_o: \mu \geq x$
- Acceptance region: $\bar{X} \geq y$
- Significance level: $\alpha = P(\overline{X} \le y)$

So far: $H_0: \mu = x$ vs. $H_1: \mu \neq x$ (so-called two-sided tests)

Now: $H_0: \mu = x$ vs. $H_1: \mu > x$ or $H_1: \mu < x$ (so-called one-sided tests)

Same as $H_0: \mu \ge x$ vs. $H_1: \mu < x$, or $H_0: \mu \le x$ vs. $H_1: \mu > x$

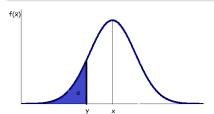
- $H_o: \mu \geq x$
- Acceptance region: $\bar{X} \geq y$
- Significance level: $\alpha = P(\overline{X} \le y)$
- P-value also one-sided

So far: $H_0: \mu = x$ vs. $H_1: \mu \neq x$ (so-called two-sided tests)

Now: $H_0: \mu = x$ vs. $H_1: \mu > x$ or $H_1: \mu < x$ (so-called one-sided tests)

Same as $H_0: \mu \ge x$ vs. $H_1: \mu < x$, or $H_0: \mu \le x$ vs. $H_1: \mu > x$

- $H_o: \mu \geq x$
- Acceptance region: $\bar{X} \geq y$
- Significance level: $\alpha = P(\overline{X} \le y)$
- P-value also one-sided



And now ...

- Revision of basics
- 2 Revision of two-sided tests vs. one-sided tests
- Many exercises

Example 2 (a) – from last lecture		

 $\emph{X}_1,\,\ldots,\,\emph{X}_5$ IID, $\sim \text{Exp}(\lambda),\,\lambda$ unknown

 $\textit{X}_1,\,\ldots,\,\textit{X}_5$ IID, $\sim \text{Exp}(\lambda),\,\lambda$ unknown

$$H_0: \lambda = 2$$
 vs. $H_1: \lambda > 2$

 X_1, \ldots, X_5 IID, $\sim \operatorname{Exp}(\lambda)$, λ unknown $H_0: \lambda = 2$ vs. $H_1: \lambda > 2$ (So under $H_0: \mu = E(X_i) = \frac{1}{2}$)

 X_1, \ldots, X_5 IID, $\sim \text{Exp}(\lambda), \lambda$ unknown

 $H_0: \lambda = 2 \text{ vs. } H_1: \lambda > 2$

(So under H_0 : $\mu = E(X_i) = \frac{1}{2}$)

 X_1, \ldots, X_5 IID, $\sim \text{Exp}(\lambda), \lambda$ unknown

 $H_0: \lambda = 2 \text{ vs. } H_1: \lambda > 2$

(So under $H_0: \mu = E(X_i) = \frac{1}{2}$)

Accept H_0 if $\bar{X} > 0.45$; calculate α

• $\bar{X} > 0.45 \Leftrightarrow \sum_{i=1}^{5} X_i > 5 \cdot 0.45 = 2.25$

 X_1, \ldots, X_5 IID, $\sim \text{Exp}(\lambda), \lambda$ unknown

 $H_0: \lambda = 2 \text{ vs. } H_1: \lambda > 2$ (So under $H_0: \mu = E(X_i) = \frac{1}{2}$)

Accept H_0 if $\bar{X} > 0.45$; calculate α

• $\bar{X} > 0.45 \Leftrightarrow \sum_{i=1}^{5} X_i > 5 \cdot 0.45 = 2.25$ Let $Y = \sum_{i=1}^{5} X_i$ (sum of independent exponentially distributed RV's)

 X_1, \ldots, X_5 IID, $\sim \text{Exp}(\lambda), \lambda$ unknown

 $H_0: \lambda = 2 \text{ vs. } H_1: \lambda > 2$

(So under $H_0: \mu = E(X_i) = \frac{1}{2}$)

- $\bar{X} > 0.45 \Leftrightarrow \sum_{i=1}^{5} X_i > 5 \cdot 0.45 = 2.25$ Let $Y = \sum_{i=1}^{5} X_i$ (sum of independent exponentially distributed RV's)
- $\Rightarrow Y \sim \operatorname{Erl}(\lambda = 0, n = 5)$ under H_0 :

 X_1, \ldots, X_5 IID, $\sim \text{Exp}(\lambda), \lambda$ unknown

 $H_0: \lambda = 2 \text{ vs. } H_1: \lambda > 2$ (So under $H_0: \mu = E(X_i) = \frac{1}{2}$)

- $\bar{X} > 0.45 \Leftrightarrow \sum_{i=1}^{5} X_i > 5 \cdot 0.45 = 2.25$ Let $Y = \sum_{i=1}^{5} X_i$ (sum of independent exponentially distributed RV's)
- $\Rightarrow Y \sim \text{Erl}(\lambda = 0, n = 5)$ under H_0 : E(Y) = 5/2
 - Apparently:

 X_1, \ldots, X_5 IID, $\sim \text{Exp}(\lambda), \lambda$ unknown

 $H_0: \lambda = 2 \text{ vs. } H_1: \lambda > 2$

(So under $H_0: \mu = E(X_i) = \frac{1}{2}$)

- $\bar{X} > 0.45 \Leftrightarrow \sum_{i=1}^{5} X_i > 5 \cdot 0.45 = 2.25$ Let $Y = \sum_{i=1}^{5} X_i$ (sum of independent exponentially distributed RV's)
- $\Rightarrow Y \sim \text{Erl}(\lambda = 0, n = 5)$ under $H_0: E(Y) = 5/2$
 - Apparently: $\alpha = P(Y \le 2.25)$

 X_1, \ldots, X_5 IID, $\sim \text{Exp}(\lambda), \lambda$ unknown

 $H_0: \lambda = 2 \text{ vs. } H_1: \lambda > 2$

(So under $H_0: \mu = E(X_i) = \frac{1}{2}$)

- $\bar{X} > 0.45 \Leftrightarrow \sum_{i=1}^{5} X_i > 5 \cdot 0.45 = 2.25$ Let $Y = \sum_{i=1}^{5} X_i$ (sum of independent exponentially distributed RV's)
- $\Rightarrow Y \sim \text{Erl}(\lambda = 0, n = 5)$ under $H_0: E(Y) = 5/2$
 - Apparently: $\alpha = P(Y \le 2.25) = \int_0^{2.25} \frac{\lambda^n x^{n-1}}{(n-1)!} \exp(-\lambda x) dx$

 X_1, \ldots, X_5 IID, $\sim \text{Exp}(\lambda), \lambda$ unknown

 $H_0: \lambda = 2 \text{ vs. } H_1: \lambda > 2$ (So under $H_0: \mu = E(X_i) = \frac{1}{2}$)

- $\bar{X} > 0.45 \Leftrightarrow \sum_{i=1}^{5} X_i > 5 \cdot 0.45 = 2.25$ Let $Y = \sum_{i=1}^{5} X_i$ (sum of independent exponentially distributed RV's)
- $\Rightarrow Y \sim \text{Erl}(\lambda = 0, n = 5)$ under H_0 : E(Y) = 5/2
 - Apparently: $\alpha = P(Y \le 2.25) = \int_0^{2.25} \frac{\lambda^n x^{n-1}}{(n-1)!} \exp(-\lambda x) dx =$ $\int_{0}^{2.25} \frac{2^{5} x^{4}}{4!} \exp(-2x) dx = \frac{4}{3} \int_{0}^{2.25} x^{4} \exp(-2x) dx$

 X_1, \ldots, X_5 IID, $\sim \operatorname{Exp}(\lambda), \lambda$ unknown

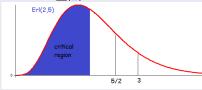
 $H_0: \lambda = 2 \text{ vs. } H_1: \lambda > 2$

(So under $H_0: \mu = E(X_i) = \frac{1}{2}$)

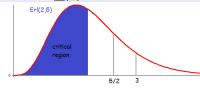
- $\bar{X} > 0.45 \Leftrightarrow \sum_{i=1}^{5} X_i > 5 \cdot 0.45 = 2.25$ Let $Y = \sum_{i=1}^{5} X_i$ (sum of independent exponentially distributed RV's)
- $\Rightarrow Y \sim \text{Erl}(\lambda = 0, n = 5)$ under $H_0: E(Y) = 5/2$
 - Apparently: $\alpha = P(Y \le 2.25) = \int_0^{2.25} \frac{\lambda^n x^{n-1}}{(n-1)!} \exp(-\lambda x) dx = \int_0^{2.25} \frac{2^5 x^4}{4!} \exp(-2x) dx = \frac{4}{3} \int_0^{2.25} x^4 \exp(-2x) dx = \dots \approx 0.4679$

We found $\sum_{i=1}^5 x_i = 3$. For what levels of significance we accept $H_0: \lambda \leq 2$?

We found $\sum_{i=1}^{5} x_i = 3$. For what levels of significance we accept $H_0: \lambda \leq 2$?

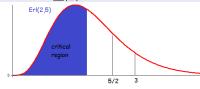


We found $\sum_{i=1}^{5} x_i = 3$. For what levels of significance we accept $H_0: \lambda \leq 2$?



$$E(Y)=2\tfrac{1}{2}$$

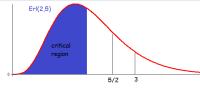
We found $\sum_{i=1}^{5} x_i = 3$. For what levels of significance we accept $H_0: \lambda \leq 2$?



$$E(Y)=2\tfrac{1}{2}$$

Realization: $y = 3 \Rightarrow$ Corresponds to a λ -value of $\frac{5}{3} < 2$,

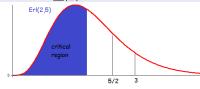
We found $\sum_{i=1}^{5} x_i = 3$. For what levels of significance we accept $H_0: \lambda \leq 2$?



$$E(Y)=2\tfrac{1}{2}$$

Realization: $y = 3 \Rightarrow$ Corresponds to a λ -value of $\frac{5}{3} < 2$, but $H_1 : \lambda > 2$

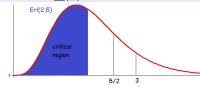
We found $\sum_{i=1}^{5} x_i = 3$. For what levels of significance we accept $H_0: \lambda \leq 2$?



$$E(Y)=2\tfrac{1}{2}$$

Realization: $y=3\Rightarrow$ Corresponds to a λ -value of $\frac{5}{3}<2$, but $H_1:\lambda>2\Rightarrow$ Never reject H_0

We found $\sum_{i=1}^{5} x_i = 3$. For what levels of significance we accept $H_0: \lambda \leq 2$?

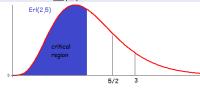


$$E(Y) = 2\frac{1}{2}$$

Realization: $y=3\Rightarrow$ Corresponds to a λ -value of $\frac{5}{3}<2$, but $H_1:\lambda>2\Rightarrow$ Never reject H_0

Example 2 (c) - from last lecture

We found $\sum_{i=1}^{5} x_i = 3$. For what levels of significance we accept $H_0: \lambda \leq 2$?



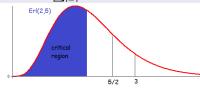
$$E(Y) = 2\frac{1}{2}$$

Realization: $y=3 \Rightarrow$ Corresponds to a λ -value of $\frac{5}{3} < 2$, but $H_1: \lambda > 2 \Rightarrow$ Never reject H_0

Example 2 (c) - from last lecture

Suppose
$$y = \sum_{i=1}^{5} x_i = 2$$

We found $\sum_{i=1}^{5} x_i = 3$. For what levels of significance we accept $H_0: \lambda \leq 2$?



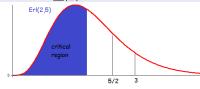
$$E(Y) = 2\frac{1}{2}$$

Realization: $y=3\Rightarrow$ Corresponds to a λ -value of $\frac{5}{3}<2$, but $H_1:\lambda>2\Rightarrow$ Never reject H_0

Example 2 (c) - from last lecture

Suppose
$$y = \sum_{i=1}^{5} x_i = 2 < 2.5$$

We found $\sum_{i=1}^{5} x_i = 3$. For what levels of significance we accept $H_0: \lambda \leq 2$?



$$E(Y) = 2\frac{1}{2}$$

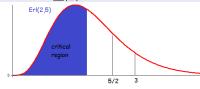
Realization: $y=3\Rightarrow$ Corresponds to a λ -value of $\frac{5}{3}<2$, but $H_1:\lambda>2\Rightarrow$ Never reject H_0

Example 2 (c) - from last lecture

Suppose $y = \sum_{i=1}^{5} x_i = 2 < 2.5$

For what α do we accept H_0 (i.e. what is the *P*-value for v=2?)

We found $\sum_{i=1}^{5} x_i = 3$. For what levels of significance we accept $H_0: \lambda \leq 2$?



$$E(Y) = 2\frac{1}{2}$$

Realization: $y=3\Rightarrow$ Corresponds to a λ -value of $\frac{5}{3}<2$, but $H_1:\lambda>2\Rightarrow$ Never reject H_0

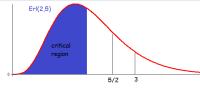
Example 2 (c) - from last lecture

Suppose $y = \sum_{i=1}^{5} x_i = 2 < 2.5$

For what α do we accept H_0 (i.e. what is the *P*-value for y=2?)

• P-value: $P(Y \le 2|H_0 \text{ is true})$

We found $\sum_{i=1}^{5} x_i = 3$. For what levels of significance we accept $H_0: \lambda \leq 2$?



$$E(Y)=2\tfrac{1}{2}$$

Realization: $y=3 \Rightarrow$ Corresponds to a λ -value of $\frac{5}{3} < 2$, but $H_1: \lambda > 2 \Rightarrow$ Never reject H_0

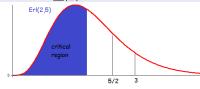
Example 2 (c) - from last lecture

Suppose $y = \sum_{i=1}^{5} x_i = 2 < 2.5$

For what α do we accept H_0 (i.e. what is the P-value for y=2?)

• P-value: $P(Y \le 2 | H_0 \text{ is true}) = P(Y \le 2 | Y \sim \text{Erl}(\lambda = 2, n = 5))$

We found $\sum_{i=1}^{5} x_i = 3$. For what levels of significance we accept $H_0: \lambda \leq 2$?



$$E(Y)=2\tfrac{1}{2}$$

Realization: $y=3\Rightarrow$ Corresponds to a λ -value of $\frac{5}{3}<2$, but $H_1:\lambda>2\Rightarrow$ Never reject H_0

Example 2 (c) - from last lecture

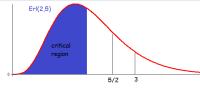
Suppose $y = \sum_{i=1}^{5} x_i = 2 < 2.5$

For what α do we accept H_0 (i.e. what is the P-value for y=2?)

• P-value:
$$P(Y \le 2|H_0 \text{ is true}) = P(Y \le 2|Y \sim \text{Erl}(\lambda = 2, n = 5))$$

= $\frac{4}{5} \int_0^2 x^4 \exp(-2x) dx$

We found $\sum_{i=1}^{5} x_i = 3$. For what levels of significance we accept $H_0: \lambda \leq 2$?



$$E(Y)=2\tfrac{1}{2}$$

Realization: $y=3\Rightarrow$ Corresponds to a λ -value of $\frac{5}{3}<2$, but $H_1:\lambda>2\Rightarrow$ Never reject H_0

Example 2 (c) - from last lecture

Suppose $y = \sum_{i=1}^{5} x_i = 2 < 2.5$

For what α do we accept H_0 (i.e. what is the P-value for y=2?)

• P-value: $P(Y \le 2|H_0 \text{ is true}) = P(Y \le 2|Y \sim \text{Erl}(\lambda = 2, n = 5))$ = $\frac{4}{3} \int_0^2 x^4 \exp(-2x) dx = ... = 1 - 34 \cdot \frac{1}{3} \cdot \exp(-4) = 0.3712$ (probably accept H_0)

- X_1, \ldots, X_5 IID $\mathcal{N}(\mu, \sigma)$, realization: $\{x_1, \ldots, x_5\} = \{3.5, 5.7, 1.2, 6.8, 7.1\}$ $\Rightarrow \bar{x} = 4.86, s = 2.487$
 - (a) If μ is unknown and $\sigma=1$, test $H_0: \mu=4$ vs. $H_1: \mu>4$. Use a P-value.
 - **(b)** If μ is unknown and σ is unknown, test $H_0: \mu = 4$ vs. $H_1: \mu > 4$. Use a significance level of 0.10.

- X_1, \ldots, X_5 IID $\mathcal{N}(\mu, \sigma)$, realization: $\{x_1, \ldots, x_5\} = \{3.5, 5.7, 1.2, 6.8, 7.1\}$ $\Rightarrow \bar{x} = 4.86, s = 2.487$
 - (a) If μ is unknown and $\sigma=$ 1, test $H_0: \mu=$ 4 vs. $H_1: \mu>$ 4. Use a P-value.
 - (b) If μ is unknown and σ is unknown, test $H_0: \mu = 4$ vs. $H_1: \mu > 4$. Use a significance level of 0.10.
- pages 334–335: Exercises 10.6, 10.7

- X_1, \ldots, X_5 IID $\mathcal{N}(\mu, \sigma)$, realization: $\{x_1, \ldots, x_5\} = \{3.5, 5.7, 1.2, 6.8, 7.1\}$ $\Rightarrow \bar{x} = 4.86, s = 2.487$
 - (a) If μ is unknown and $\sigma=1$, test $H_0: \mu=4$ vs. $H_1: \mu>4$. Use a P-value.
 - (b) If μ is unknown and σ is unknown, test $H_0: \mu = 4$ vs. $H_1: \mu > 4$. Use a significance level of 0.10.
- pages 334–335: Exercises 10.6, 10.7
- Try all odd exercises on pages 334–335