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Main Question

If we already know that an event A occurs, what is then the
probability that an event B occurs?

Example
S$={1,2,3,4}, P({i}) = % i=1,2,3,4

A={1,2}, B={2,3}

B|A:The event Bgiven A= {2} = ANB

But given that A occurs the sample space is actually reduced to
A={12}

P({2
P(BIA) = ({2 =

=SS

— % (conditional probability)

(=]
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Probability of event B given A is

P(AN B)

PBIA) = 50

for any two events A and B, as long as P(A) > 0.

Dependence of events

In the example we have P(B) = 1, P(B|A) = 2

So apparently the probability that B occurs changes if we have
the additional info that A occurs: P(B) # P(B|A)

A and B are dependent
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A and B are called independent if

(a) P(A|B) = P(A)or

(b) P(B|A) = P(B)

(a) and (b) are equivalent if P(A) > 0, P(B) > 0
Since

@ P(AnB) = P(A)- P(B|A) and
@ P(AnB) = P(B)- P(AB))
A and B are independent < P(AN B) = P(A) - P(B)

Next: Conditional Probability Distributions (book: Section 3.4)
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Discrete

Conditional Probability Distribution

Let X and Y be discrete RVs with joint probability distribution f.
The conditional probability of X given that Y has the value y is
f(xly) = P(X =x|Y =y) = PO;(:YX;YSH - fgfuyy))

Throwing 2 dice, X : max, Y : min.

What is conditional probability distribution of X given Y = 2?
(Check at home) P(Y =2) =

s

X=23,4,56:f(x,y)={5:x=2:f(X,¥) = 2

X > 3.4.5. 6
1 1

f(x,2)=P(X=x|Y=2) | £=1|E=2
i i




Conditional Probability Distributions
0

Continuous = Density

Conditional Probability Distribution

Let X and Y be continuous RV’s with joint probability density f.
The conditional probability of X given that Y has the value y is
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Conditional Probability Distribution

Let X and Y be continuous RV’s with joint probability density f.
The conditional probability of X given that Y has the value y is

< X< <Y<
e — Px<X<x+4ly<Y<y-+e
(4,€)4(0,0) )
. Px<X<x+d4y<Y<y+e
= lim
(6,€)1(0,0) 0-Ply<Y<y-+e)
_ 4im P sX<x+b4y<Y<y+e
 (5,6)1(0,0) e
€
Ply<Y<y+e

_ 1 (xy)
=19 50y = Thiyy

provided h(y) > 0
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Conditional Probability Distribution

Let X and Y be continuous RV’s with joint probability density f.
The conditional probability of X given that Y has the value y is

< X< <Y<
G = [ Px<X<x+4ly<Y<y-+e
(4,€)4(0,0) )
. Px<X<x+d4y<Y<y+e
= lim
(6,€)1(0,0) 0-Ply<Y<y-+e)
— im Px<X<x+48y<Y<y+e

(6,€)4(0,0) O€
€

Ply<Y<y+e)

=f(x,y)- h(1y) = TOR provided h(y) > 0

Same formula as for discrete case!
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P(X>1ly=1)
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Continuous = Density

Example - from before

Let X and Y be continuous RV’s with joint probability density f

[ 10xy? O0<x<y<H1
fx.y) = { 0, elsewhere

Calculate conditional density of X, given Y = % and calculate
P(X >3V =1})

(Check at home) g(x) = 2x — 22 x* 0 < x < 1 (0 elsewhere)
h(y) =5y* 0< y <1 (0 elsewhere)

f(xly) = 12,);,3/ yz, 0 < x <y <1(0elsewhere)
f(x|3)=P(X=x,Y =3)= [%}y:;:8x,0<x<;(0
elsewhere)

= 2 (0 elsewhere)

1
PX>1y=1%)= f§8xdx:[4x2]

2
x=1

(A)
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Let X and Y be RV’s with joint PDF f and let g and h be the
marginal distributions of X and Y, respectively. Then X and Y
are called independent if

f(x,y) =9(x) - h(y)
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Definition of statistical independence
Let X and Y be RV’s with joint PDF f and let g and h be the

marginal distributions of X and Y, respectively. Then X and Y
are called independent if

f(x,y) =9(x) - h(y)
(Examplet

X : maximum of eyes on 2 dice, Y : minimum
@ f(3,2)=P(X=8,Y=2)=
° g(3) =g

9

1
18
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9

1
18

36 4
@ f(3,2) # 9(3)- h(2) = X and Y are dependent
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Statistical Independence of RVs

Definition of statistical independence

Let X and Y be RV’s with joint PDF f and let g and h be the
marginal distributions of X and Y, respectively. Then X and Y
are called independent if

f(x,y) =9(x) - h(y)

y 1
;<x<10<y<?2

_ 2 x2) 2 9
fx.y) { 0, elsewhere

‘

. a<x<1
, O<y<2
g(x) - h(y) = X and Y are independent

N

@ g(x) =
® h(y)
° f(x,y)

[l rors x
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Definition of statistical independence

Let X and Y be RV’s with joint PDF f and let g and h be the
marginal distributions of X and Y, respectively. Then X and Y
are called independent if

f(x,y) = h(x)-g(y)

[ 10xy? O0<x<y<H1
f(x’y)_{ 0, elsewhere

glx)=x—-0x* 0<x<1

oh(y)_5y, O<y<i
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Definition of statistical independence

Let X and Y be RV’s with joint PDF f and let g and h be the
marginal distributions of X and Y, respectively. Then X and Y
are called independent if

f(x,y) = h(x)-g(y)

[ 10xy? O0<x<y<H1
f(x’y)_{ 0, elsewhere

0 g(x)=2x-0x* 0<x<1
@ h(y)=5y% 0<y<1
@ f(x,y)# g(x)-h(y) = X and Y are dependent
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Example 4

Bag 1: 3 red, 2 blue marbles, bag 2: 4 red, 5 blue marbles

E: Pick 2 marbles from bag 1 and 4 marbles from bag 2.

RVs: X : g reds from bag 1, Y : f reds from bag 2

Are X and Y dependent? No! ¢ reds drawn from bag 1 does in
no way influence the £ reds drawn from bag 2 and vice versa

g(x):P(X:x):<'j>(5§_X>, x=0,1,2

N

4

h(y)—P(Y—y)—((Z_y> y=0,1,23,4

<
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Example 4 (cont.)

Bag 1: 3 red, 2 blue marbles, bag 2: 4 red, 5 blue marbles
RVs: X : t reds from bag 1, Y : # reds from bag 2

g(x):P(X:x):<)3(><§X> x=0,1,2
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Example 4 (cont.)

Bag 1: 3 red, 2 blue marbles, bag 2: 4 red, 5 blue marbles
RVs: X : t reds from bag 1, Y : # reds from bag 2

g(x):P(X:x):<)3(><5§X>, x=0,1,2
(2)

h(y)—P(Y—y)—Hi_y) y=0,1,23,4

SN

<
/\\/
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Example 4 (cont.)

Bag 1: 3 red, 2 blue marbles, bag 2: 4 red, 5 blue marbles
RVs: X : t reds from bag 1, Y : # reds from bag 2

g(x):P(X:x):<)3(><§X>, x=0,1,2

(2)

< &

h(y)=P(Y =y) = (

)2y ) s
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