▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Lecture 7: Bayes' Rule, Revision

Kateřina Staňková

Statistics (MAT1003)

April 26, 2012

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Outline

Preliminaries

Partition of a sample space

2 Bayes' rule

- Theory
- Examples

Bayes' rule

A lot of computing ...

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

And now ...

Preliminaries

Partition of a sample space

2) Bayes' rule

- Theory
- Examples

Partition of a sample space

Partition of a sample space

Partition of a sample space

•
$$\bigcup_{i=1}^{k} B_i = B_1 \cup B_2 \cup \ldots B_k = S$$

•
$$\bigcup_{i=1}^{k} B_i = B_1 \cup B_2 \cup \ldots B_k = S$$

•
$$B_i \cap B_j = \emptyset$$
 for all $i, j \in \{1, \dots, k\}, i \neq j$

Partition of a sample space

•
$$\bigcup_{i=1}^{\kappa} B_i = B_1 \cup B_2 \cup \ldots B_k = S$$

•
$$B_i \cap B_j = \emptyset$$
 for all $i, j \in \{1, \ldots, k\}, i \neq j$

Partition of a sample space

Let *S* be a sample space. A set of subsets B_1, B_2, \ldots, B_k of *S* is called a partition of *S* if

•
$$\bigcup_{i=1}^{\kappa} B_i = B_1 \cup B_2 \cup \ldots B_k = S$$

• $B_i \cap B_j = \emptyset$ for all $i, j \in \{1, \dots, k\}, i \neq j$

Preliminaries ○●○	Bayes′ rule	A lot of computing
Partition of a sample space		

$$S = \{1, 2, 3, 4, 5, 6\}$$

Prelimi	nari	es
000		

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲≣ めるの

Partition of a sample space

$$S = \{1, 2, 3, 4, 5, 6\}$$

Partition $\{B_1, B_2, B_3\}$ with $B_1 = \{1, 3\}, B_2 = \{5\}, B_3 = \{2, 4, 6\}$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲≣ めるの

Partition of a sample space

Example 1

$$S = \{1, 2, 3, 4, 5, 6\}$$

Partition $\{B_1, B_2, B_3\}$ with $B_1 = \{1, 3\}, B_2 = \{5\}, B_3 = \{2, 4, 6\}$

Partition of a sample space

Example 1

$$S = \{1, 2, 3, 4, 5, 6\}$$

Partition $\{B_1, B_2, B_3\}$ with $B_1 = \{1, 3\}, B_2 = \{5\}, B_3 = \{2, 4, 6\}$

Example 2

 $\boldsymbol{\mathcal{S}}=[0,1]$

Example 1

$$S = \{1, 2, 3, 4, 5, 6\}$$

Partition $\{B_1, B_2, B_3\}$ with $B_1 = \{1, 3\}, B_2 = \{5\}, B_3 = \{2, 4, 6\}$

$$S = [0, 1]$$

Partition $\{I_1, I_2\}$ with $I_1 = [0, \frac{1}{2}), I_2 = [\frac{1}{2}, 1]$

Example 1

$$S = \{1, 2, 3, 4, 5, 6\}$$

Partition $\{B_1, B_2, B_3\}$ with $B_1 = \{1, 3\}, B_2 = \{5\}, B_3 = \{2, 4, 6\}$

Example 2

$$S = [0, 1]$$

Partition $\{I_1, I_2\}$ with $I_1 = [0, \frac{1}{2}), I_2 = [\frac{1}{2}, 1]$

Example 3

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲≣ めるの

$$S = \{1, 2, 3, 4, 5, 6\}$$

Partition $\{B_1, B_2, B_3\}$ with $B_1 = \{1, 3\}, B_2 = \{5\}, B_3 = \{2, 4, 6\}$

Example 2

$$S = [0, 1]$$

Partition $\{I_1, I_2\}$ with $I_1 = [0, \frac{1}{2}), I_2 = [\frac{1}{2}, 1]$

Example 3

Any sample space S

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ●

Partition of a sample space

Example 1

$$S = \{1, 2, 3, 4, 5, 6\}$$

Partition $\{B_1, B_2, B_3\}$ with $B_1 = \{1, 3\}, B_2 = \{5\}, B_3 = \{2, 4, 6\}$

Example 2

$$S = [0, 1]$$

Partition $\{I_1, I_2\}$ with $I_1 = [0, \frac{1}{2}), I_2 = [\frac{1}{2}, 1]$

Example 3

Any sample space SPartition $\{B, B'\}$ for any $B \subseteq S$

Observation

Observation

Let B_1, \ldots, B_k be a partition of S. Then for any $A \subseteq S$:

$$A = A \cap S = A \cap (B_1 \cup B_2 \cup \ldots \cup B_k)$$
$$= \underbrace{(A \cap B_1)}_{A_1} \cup \underbrace{(A \cap B_2)}_{A_2} \cup \ldots \cup \underbrace{(A \cap B_k)}_{A_k}$$

Observation

Let B_1, \ldots, B_k be a partition of S. Then for any $A \subseteq S$:

$$A = A \cap S = A \cap (B_1 \cup B_2 \cup \ldots \cup B_k)$$
$$= \underbrace{(A \cap B_1)}_{A_1} \cup \underbrace{(A \cap B_2)}_{A_2} \cup \ldots \cup \underbrace{(A \cap B_k)}_{A_k}$$

Observation

Let B_1, \ldots, B_k be a partition of S. Then for any $A \subseteq S$:

$$A = A \cap S = A \cap (B_1 \cup B_2 \cup \ldots \cup B_k)$$

= $\underbrace{(A \cap B_1)}_{A_1} \cup \underbrace{(A \cap B_2)}_{A_2} \cup \ldots \cup \underbrace{(A \cap B_k)}_{A_k}$

 $P(A_i) = P(A \cap B_i) = P(B_i) \cdot P(A|B_i)$ A_1, \dots, A_k disjoint sets

Observation

Let B_1, \ldots, B_k be a partition of S. Then for any $A \subseteq S$:

$$A = A \cap S = A \cap (B_1 \cup B_2 \cup \ldots \cup B_k)$$

= $\underbrace{(A \cap B_1)}_{A_1} \cup \underbrace{(A \cap B_2)}_{A_2} \cup \ldots \cup \underbrace{(A \cap B_k)}_{A_k}$

$$P(A_i) = P(A \cap B_i) = P(B_i) \cdot P(A|B_i)$$

 A_1, \dots, A_k disjoint sets

$$P(A) = \sum_{i=1}^{k} P(A \cap B_i)$$

= $\sum_{i=1}^{k} P(B_i) \cdot P(A|B_i)$

Bayes' rule

And now ...

Preliminaries

• Partition of a sample space

2 Bayes' rule

- Theory
- Examples

Theory

Bayes' rule

< ロ > < 母 > < 言 > < 言 > 、 言 、 うへの

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Theory

Bayes' rule

If $P(B_i)$ and $P(A|B_i)$ are given for all *i*, we can calculate $P(B_i|A)$ as follows:

Theory

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Bayes' rule

If $P(B_i)$ and $P(A|B_i)$ are given for all *i*, we can calculate $P(B_i|A)$ as follows:

$$P(B_i|A) = rac{P(B_i \cap A)}{P(A)} = rac{P(B_i) \cdot P(A|B_i)}{P(A)}$$

Theory

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Bayes' rule

If $P(B_i)$ and $P(A|B_i)$ are given for all *i*, we can calculate $P(B_i|A)$ as follows:

$$P(B_i|A) = \frac{P(B_i \cap A)}{P(A)} = \frac{P(B_i) \cdot P(A|B_i)}{P(A)}$$

where
$$P(A) = \sum_{i=1}^{K} P(B_i) \cdot P(A|B_i)$$

Exercise 2.95 + forget about 40

Exercise 2.95 + forget about 40

• Events:

Exercise 2.95 + forget about 40

• Events:

C: A randomly chosen person has cancer

Exercise 2.95 + forget about 40

• Events:

- C: A randomly chosen person has cancer
- D: A randomly chosen person is diagnosed as having cancer

Exercise 2.95 + forget about 40

• Events:

- C: A randomly chosen person has cancer
- D: A randomly chosen person is diagnosed as having cancer

Complementary events: C' and D'

Exercise 2.95 + forget about 40

• Events:

- C: A randomly chosen person has cancer
- D: A randomly chosen person is diagnosed as having cancer

Complementary events: C' and D'

Exercise 2.95 + forget about 40

Events:

- C: A randomly chosen person has cancer
- D: A randomly chosen person is diagnosed as having cancer

Complementary events: C' and D'

•
$$P(C) = 0.05$$
 ($P(C') = 0.95$)

Exercise 2.95 + forget about 40

Events:

- C: A randomly chosen person has cancer
- D: A randomly chosen person is diagnosed as having cancer

Complementary events: C' and D'

•
$$P(C) = 0.05$$
 ($P(C') = 0.95$)

•
$$P(D|C) = 0.78$$
 ($P(D'|C) = 0.22$)

Exercise 2.95 + forget about 40

Events:

- C: A randomly chosen person has cancer
- D: A randomly chosen person is diagnosed as having cancer

Complementary events: C' and D'

- P(C) = 0.05 (P(C') = 0.95)
- P(D|C) = 0.78 (P(D'|C) = 0.22)
- P(D|C') = 0.06 (P(D'|C') = 0.94)

Exercise 2.95 + forget about 40

Events:

- C: A randomly chosen person has cancer
- D: A randomly chosen person is diagnosed as having cancer

Complementary events: C' and D'

Data:

- P(C) = 0.05 (P(C') = 0.95)
- P(D|C) = 0.78 (P(D'|C) = 0.22)
- P(D|C') = 0.06 (P(D'|C') = 0.94)

Question 1:P(D) =?

Exercise 2.95 + forget about 40

Events:

- C: A randomly chosen person has cancer
- D: A randomly chosen person is diagnosed as having cancer

Complementary events: C' and D'

Data:

- P(C) = 0.05 (P(C') = 0.95)
- P(D|C) = 0.78 (P(D'|C) = 0.22)
- P(D|C') = 0.06 (P(D'|C') = 0.94)
- Question 1:P(D) =?
- Solution:

P(D) =

Exercise 2.95 + forget about 40

Events:

- C: A randomly chosen person has cancer
- D: A randomly chosen person is diagnosed as having cancer

Complementary events: C' and D'

Data:

- P(C) = 0.05 (P(C') = 0.95)
- P(D|C) = 0.78 (P(D'|C) = 0.22)
- P(D|C') = 0.06 (P(D'|C') = 0.94)
- Question 1:P(D) =?

Solution:

 $P(D) = P(D \cap C) + P(D \cap C')$

Exercise 2.95 + forget about 40

Events:

- C: A randomly chosen person has cancer
- D: A randomly chosen person is diagnosed as having cancer

Complementary events: C' and D'

Data:

- P(C) = 0.05 (P(C') = 0.95)
- P(D|C) = 0.78 (P(D'|C) = 0.22)
- P(D|C') = 0.06 (P(D'|C') = 0.94)
- Question 1:P(D) =?

Solution:

$$P(D) = P(D \cap C) + P(D \cap C')$$

= P(C) \cdot P(D|C) + P(C') \cdot P(D|C')

Exercise 2.95 + forget about 40

Events:

- C: A randomly chosen person has cancer
- D: A randomly chosen person is diagnosed as having cancer

Complementary events: C' and D'

Data:

- P(C) = 0.05 (P(C') = 0.95)
- P(D|C) = 0.78 (P(D'|C) = 0.22)
- P(D|C') = 0.06 (P(D'|C') = 0.94)
- Question 1:P(D) =?

Solution:

$$P(D) = P(D \cap C) + P(D \cap C')$$

= P(C) \cdot P(D|C) + P(C') \cdot P(D|C')
= 0.05 \cdot 0.78 + 0.95 \cdot 0.06 = 0.039 + 0.054 = 0.093

Exercise 2.95

- Events:
 - C: A randomly chosen person has cancer
 - D: A randomly chosen person is diagnosed as having cancer

Complementary events: C' and D'

- P(C) = 0.05 (P(C') = 0.95)
- P(D|C) = 0.78 (P(D'|C) = 0.22)
- P(D|C') = 0.06 (P(D'|C') = 0.94)
- P(D) = 0.093 (P(D') = 1 0.093 = 0.907)

Exercise 2.95

- Events:
 - C : A randomly chosen person has cancer
 - D: A randomly chosen person is diagnosed as having cancer

Complementary events: C' and D'

- P(C) = 0.05 (P(C') = 0.95)
- P(D|C) = 0.78 (P(D'|C) = 0.22)
- P(D|C') = 0.06 (P(D'|C') = 0.94)
- P(D) = 0.093 (P(D') = 1 0.093 = 0.907)
- Question 2: What is the probability that someone diagnosed with cancer actually has the disease?

Exercise 2.95

- Events:
 - C: A randomly chosen person has cancer
 - D: A randomly chosen person is diagnosed as having cancer

Complementary events: C' and D'

- P(C) = 0.05 (P(C') = 0.95)
- P(D|C) = 0.78 (P(D'|C) = 0.22)
- P(D|C') = 0.06 (P(D'|C') = 0.94)
- P(D) = 0.093 (P(D') = 1 0.093 = 0.907)
- Question 2: What is the probability that someone diagnosed with cancer actually has the disease?
 P(C|D) =?

Exercise 2.95

- Events:
 - C : A randomly chosen person has cancer
 - D: A randomly chosen person is diagnosed as having cancer

Complementary events: C' and D'

- P(C) = 0.05 (P(C') = 0.95)
- P(D|C) = 0.78 (P(D'|C) = 0.22)
- P(D|C') = 0.06 (P(D'|C') = 0.94)
- P(D) = 0.093 (P(D') = 1 0.093 = 0.907)
- Question 2: What is the probability that someone diagnosed with cancer actually has the disease?
 P(C|D) =?
- Solution:

$$P(C|D) =$$

Exercise 2.95

- Events:
 - C: A randomly chosen person has cancer
 - D: A randomly chosen person is diagnosed as having cancer

Complementary events: C' and D'

- P(C) = 0.05 (P(C') = 0.95)
- P(D|C) = 0.78 (P(D'|C) = 0.22)
- P(D|C') = 0.06 (P(D'|C') = 0.94)
- P(D) = 0.093 (P(D') = 1 0.093 = 0.907)
- Question 2: What is the probability that someone diagnosed with cancer actually has the disease?
 P(C|D) =?
- Solution:

$$P(C|D) = rac{P(C \cap D)}{P(D)}$$

Exercise 2.95

- Events:
 - C: A randomly chosen person has cancer
 - D: A randomly chosen person is diagnosed as having cancer

Complementary events: C' and D'

Data:

- P(C) = 0.05 (P(C') = 0.95)
- P(D|C) = 0.78 (P(D'|C) = 0.22)
- P(D|C') = 0.06 (P(D'|C') = 0.94)
- P(D) = 0.093 (P(D') = 1 0.093 = 0.907)
- Question 2: What is the probability that someone diagnosed with cancer actually has the disease?
 P(C|D) =?

Solution:

$$P(C|D) = \frac{P(C \cap D)}{P(D)} = \frac{P(D|C) \cdot P(C)}{P(D)}$$

Exercise 2.95

- Events:
 - C : A randomly chosen person has cancer
 - D: A randomly chosen person is diagnosed as having cancer

Complementary events: C' and D'

Data:

- P(C) = 0.05 (P(C') = 0.95)
- P(D|C) = 0.78 (P(D'|C) = 0.22)
- P(D|C') = 0.06 (P(D'|C') = 0.94)
- P(D) = 0.093 (P(D') = 1 0.093 = 0.907)
- Question 2: What is the probability that someone diagnosed with cancer actually has the disease?
 P(C|D) =?

Solution:

$$P(C|D) = \frac{P(C \cap D)}{P(D)} = \frac{P(D|C) \cdot P(C)}{P(D)} = \frac{0.78 \cdot 0.05}{0.093} = \frac{0.039}{0.093} = \frac{13}{31}$$

Exercise 2.95 - Question 3

- Events:
 - C: A randomly chosen person has cancer
 - D: A randomly chosen person is diagnosed as having cancer

- P(C) = 0.05 (P(C') = 0.95)
- P(D|C) = 0.78 (P(D'|C) = 0.22)
- P(D|C') = 0.06 (P(D'|C') = 0.94)
- P(D) = 0.093 (P(D') = 1 0.093 = 0.907)

Exercise 2.95 - Question 3

- Events:
 - C: A randomly chosen person has cancer
 - D: A randomly chosen person is diagnosed as having cancer

- P(C) = 0.05 (P(C') = 0.95)
- P(D|C) = 0.78 (P(D'|C) = 0.22)
- P(D|C') = 0.06 (P(D'|C') = 0.94)
- P(D) = 0.093 (P(D') = 1 0.093 = 0.907)
- Question 3: What is the probability that someone who is diagnosed as not having cancer actually has the disease?

Exercise 2.95 - Question 3

- Events:
 - C: A randomly chosen person has cancer
 - D: A randomly chosen person is diagnosed as having cancer

- P(C) = 0.05 (P(C') = 0.95)
- P(D|C) = 0.78 (P(D'|C) = 0.22)
- P(D|C') = 0.06 (P(D'|C') = 0.94)
- P(D) = 0.093 (P(D') = 1 0.093 = 0.907)
- Question 3: What is the probability that someone who is diagnosed as not having cancer actually has the disease?
 P(C|D') =?

Exercise 2.95 - Question 3

- Events:
 - C: A randomly chosen person has cancer
 - D: A randomly chosen person is diagnosed as having cancer

- P(C) = 0.05 (P(C') = 0.95)
- P(D|C) = 0.78 (P(D'|C) = 0.22)

•
$$P(D|C') = 0.06$$
 $(P(D'|C') = 0.94)$

- P(D) = 0.093 (P(D') = 1 0.093 = 0.907)
- Question 3: What is the probability that someone who is diagnosed as not having cancer actually has the disease?
 P(C|D') =?
- Solution:

$$P(C|D') =$$

Exercise 2.95 - Question 3

- Events:
 - C: A randomly chosen person has cancer
 - D: A randomly chosen person is diagnosed as having cancer

- P(C) = 0.05 (P(C') = 0.95)
- P(D|C) = 0.78 (P(D'|C) = 0.22)

•
$$P(D|C') = 0.06$$
 $(P(D'|C') = 0.94)$

- P(D) = 0.093 (P(D') = 1 0.093 = 0.907)
- Question 3: What is the probability that someone who is diagnosed as not having cancer actually has the disease?
 P(C|D') =?
- Solution:

$$P(C|D') = rac{P(C \cap D')}{P(D')}$$

Exercise 2.95 - Question 3

- Events:
 - C: A randomly chosen person has cancer
 - D: A randomly chosen person is diagnosed as having cancer

- P(C) = 0.05 (P(C') = 0.95)
- P(D|C) = 0.78 (P(D'|C) = 0.22)

•
$$P(D|C') = 0.06$$
 $(P(D'|C') = 0.94)$

- P(D) = 0.093 (P(D') = 1 0.093 = 0.907)
- Question 3: What is the probability that someone who is diagnosed as not having cancer actually has the disease?
 P(C|D') =?
- Solution:

$$\mathsf{P}(\mathsf{C}|\mathsf{D}') = \frac{\mathsf{P}(\mathsf{C}\cap\mathsf{D}')}{\mathsf{P}(\mathsf{D}')} = \frac{\mathsf{P}(\mathsf{D}'|\mathsf{C})\cdot\mathsf{P}(\mathsf{C})}{\mathsf{P}(\mathsf{D}')}$$

Exercise 2.95 - Question 3

- Events:
 - C: A randomly chosen person has cancer
 - D: A randomly chosen person is diagnosed as having cancer

Data:

- P(C) = 0.05 (P(C') = 0.95)
- P(D|C) = 0.78 (P(D'|C) = 0.22)

•
$$P(D|C') = 0.06$$
 $(P(D'|C') = 0.94)$

- P(D) = 0.093 (P(D') = 1 0.093 = 0.907)
- Question 3: What is the probability that someone who is diagnosed as not having cancer actually has the disease?
 P(C|D') =?

Solution:

$$P(C|D') = \frac{P(C \cap D')}{P(D')} = \frac{P(D'|C) \cdot P(C)}{P(D')}$$
$$= \frac{0.05 \cdot 0.22}{0.907} = \frac{0.0011}{0.907} \approx 0.012$$

Bayes' rule

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

And now ...

Partition of a sample space

2 Bayes' rule

- Theory
- Examples

▲□▶▲□▶▲□▶▲□▶ □ のQ@

- Try all odd exercises from Section 2.7 (pp. 76–77), Exercise 2.99 was done in the class
- Also, you should be able to compute all Review exercises from pp. 77-79, check it!