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Partition of a sample space

Partition of a sample space

Let S be a sample space. A set of subsets B1, B2, . . . , Bk of S
is called a partition of S if

k⋃
i=1

Bi = B1 ∪ B2 ∪ . . .Bk = S

Bi ∩ Bj = ∅ for all i , j ∈ {1, . . . , k}, i 6= j
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Partition of a sample space

Example 1
S = {1,2,3,4,5,6}

Partition {B1,B2,B3} with B1 = {1,3}, B2 = {5}, B3 = {2,4,6}

Example 2

S = [0,1]
Partition {I1, I2} with I1 =

[
0, 1

2

)
, I2 =

[1
2 ,1
]

Example 3

Any sample space S
Partition {B,B′} for any B ⊆ S
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Partition of a sample space

Observation

Let B1, . . . , Bk be a partition of S. Then for any A ⊆ S :

A = A ∩ S = A ∩ (B1 ∪ B2 ∪ . . . ∪ Bk )

= (A ∩ B1)︸ ︷︷ ︸
A1

∪ (A ∩ B2)︸ ︷︷ ︸
A2

∪ . . . ∪ (A ∩ Bk )︸ ︷︷ ︸
Ak

P(Ai) = P(A ∩ Bi) = P(Bi) ·
P(A|Bi)
A1,. . . , Ak disjoint sets

P(A)=
k∑

i=1

P(A ∩ Bi)

=
k∑

i=1

P(Bi) · P(A|Bi)
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Theory

Bayes′ rule

If P(Bi) and P(A|Bi) are given for all i , we can calculate P(Bi |A)
as follows:

P(Bi |A)=
P(Bi ∩ A)

P(A)
=

P(Bi) · P(A|Bi)

P(A)

where P(A) =
k∑

i=1
P(Bi) · P(A|Bi)
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Examples

Exercise 2.95 + forget about 40

Events:

C : A randomly chosen person has cancer
D : A randomly chosen person is diagnosed as having cancer

Complementary events: C′ and D′

Data:

P(C) = 0.05 (P(C′) = 0.95)
P(D|C) = 0.78 (P(D′|C) = 0.22)
P(D|C′) = 0.06 (P(D′|C′) = 0.94)

Question 1:P(D) =?

Solution:

P(D) =

P(D ∩ C) + P(D ∩ C′)

= P(C) · P(D|C) + P(C′) · P(D|C′)

= 0.05 · 0.78 + 0.95 · 0.06 = 0.039 + 0.054 = 0.093
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Complementary events: C′ and D′

Data:
P(C) = 0.05 (P(C′) = 0.95)
P(D|C) = 0.78 (P(D′|C) = 0.22)
P(D|C′) = 0.06 (P(D′|C′) = 0.94)
P(D) = 0.093 (P(D′) = 1− 0.093 = 0.907)

Question 2: What is the probability that someone
diagnosed with cancer actually has the disease?

P(C|D) =?

Solution:

P(C|D) =

P(C ∩ D)

P(D)
=

P(D|C) · P(C)

P(D)
=

0.78 · 0.05
0.093

=
0.039
0.093

=
13
31
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Examples

Exercise 2.95 - Question 3
Events:
C : A randomly chosen person has cancer
D : A randomly chosen person is diagnosed as having cancer

Data:
P(C) = 0.05 (P(C′) = 0.95)
P(D|C) = 0.78 (P(D′|C) = 0.22)
P(D|C′) = 0.06 (P(D′|C′) = 0.94)
P(D) = 0.093 (P(D′) = 1− 0.093 = 0.907)

Question 3: What is the probability that someone who is
diagnosed as not having cancer actually has the disease?
P(C|D′) =?

Solution:

P(C|D′) =

P(C ∩ D′)

P(D′)
=

P(D′|C) · P(C)

P(D′)

=
0.05 · 0.22

0.907
=

0.0011
0.907

≈ 0.012
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And now . . .

1 Preliminaries
Partition of a sample space

2 Bayes′ rule
Theory
Examples

3 A lot of computing . . .
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Try all odd exercises from Section 2.7 (pp. 76–77),
Exercise 2.99 was done in the class
Also, you should be able to compute all Review exercises
from pp. 77-79, check it!
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