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Partition of a sample space

Partition of a sample space
Let S be a sample space. A set of subsets B1, B2, . . . , Bk of S
is called a partition of S if

k⋃
i=1

Bi = B1 ∪ B2 ∪ . . .Bk = S

Bi ∩ Bj = ∅ for all i , j ∈ {1, . . . , k}, i 6= j
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Bayes′ rule

Bayes′ rule

If P(Bi) and P(A|Bi) are given for all i , we can calculate P(Bi |A)
as follows:

P(Bi |A)=
P(Bi ∩ A)

P(A)
=

P(Bi) · P(A|Bi)

P(A)

where P(A) =
k∑

i=1
P(Bi) · P(A|Bi)

+ Examples
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Expectation (Mean) of Discrete Random Variable

Book: Chapter 4.1

Throwing a die 6000 times . . .

The number of events will be approximately: 1000 × ’1’, 1000 ×
’2’, 1000 × ’3’, 1000 × ’4’, 1000 × ’5’, 1000 × ’6’
The total ] eyes will be therefore approximately
1000·1+1000·2+1000·3+1000·4+1000·5+1000·6 = 21·103

The average ] eyes is then approximately

103 · 1 + 103 · 2 + 103 · 3 + 103 · 4 + 103 · 5 + 103 · 6
6 · 103

=
1
6
· 1 +

1
6
· 2 +

1
6
· 3 +

1
6
· 4 +

1
6
· 5 +

1
6
· 6 = 3

1
2

= P({1}) · 1 + P({2}) · 2 + P({3}) · 3 + P({4}) · 4
+ P({5}) · 5 + P({6}) · 6

=
∑
s∈S

s · P({s})
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Expectation (Mean) of Discrete Random Variable

Expectation (Mean) of Discrete Random Variable
Expectation (mean, expected value) of discrete random
variable X is defined as

E(X ) = µX =
∑
x∈X

x · f (x).

In the previous example: X : ] eyes in a single throw.

Example 2
Y : ] eyes squared

E(Y ) = µY =
∑
y∈Y

y · f (y)

= 1 · 1
6
+ 4 · 1

6
+ 9 · 1

6
+ 16 · 1

6
+ 25 · 1

6
+ 36 · 1

6

=
91
6
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Expectation (Mean) of Continuous Random Variable

Expectation (Mean) of Continuous Random Variable
Expectation (mean) of continuous random variable X is defined
as

E(X ) = µX =

∫ ∞
−∞

x · f (x)dx

Example
X is a continuous RV with PDF:

f (x) =
{

8 − 2x , 3 < x < 4,
0, elsewhere

What is E(X )?

E(X ) = µX =

∫ ∞
−∞

x · f (x)dx

=

∫ 4

3
x(8 − 2 x)dx =

[
4 x2 − 2

3
x3
]4

x=3

= 64 − 128
3

− (36 − 18) =
64
3

− 18 = 3
1
3
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Discrete RV
Let X be a discrete RV with PDF f and let g be an arbitrary
real-valued function. Then the expectation (mean) of g(X ) is
defined as follows:

E(g(X )) = µg(X) =
∑
x∈X

g(x)f (x)

Continuous RV
Let X be a continuous RV with PDF f and let g be an arbitrary
real-valued function. Then the expectation of g(X ) is defined as
follows:

E(g(X )) = µg(X) =

∫ ∞
−∞

g(x)f (x) dx
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Discrete RV
Let X be a discrete RV with PDF f and let g and h be arbitrary
real-valued functions. Then the expectation (mean) of
g(X ) + h(X ) is defined as follows:

E(g(X ) + h(X ))= µg(X)+h(X) =
∑

X

(g(x) + h(x))f (x)

=
∑

X

g(x) f (x) +
∑

X

h(x) f (x) = E(g(X )) + E(h(X ))

Continuous RV
Let X be a continuous RV with PDF f and let g and h be
arbitrary real-valued functions. Then the expectation (mean) of
g(X ) + h(X ) is defined as follows:

E(g(X ) + h(X ))= µg(X)+h(X) =

∫ ∞
−∞

(g(x) + h(x))f (x) dx

=

∫ ∞
−∞

g(x) f (x)dx +

∫ ∞
−∞
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Other relations
E(aX + b) = aE(X ) + b

E(a X 2 + b X + c) = a E(X 2) + b E(X ) + c
E(X + Y ) = E(X ) + E(Y )

E(g(X ,Y )± h(X ,Y )) = E(g(X ,Y ))± E(h(X ,Y ))
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Example: Toss 2 dice
X : ] eyes on first die

Y : ] eyes on second die
g(X ,Y ) : squared ] eyes on first die: g(x , y) = x2

h(X ,Y ) : product of ] on the two dice: h(x , y) = x y
E(g(X ,Y ) + h(X ,Y )) =?

E(g(X ,Y ) + h(X ,Y )) = E(X 2 + X Y ) = E(X 2) + E(XY )

=
91
6

+ E(XY ) =?
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Other relations - Independent RVs
Let X and Y be independent RVs. Then

E(XY ) = E(X ) · E(Y )

Example: Toss of 2 dice
X : ] eyes on first die
Y : ] eyes on second die
g(X ,Y ) : squared ] eyes on first die: g(x , y) = x2

h(X ,Y ) : product of ] on the two dice: h(x , y) = x y
E(g(X ,Y ) + h(X ,Y )) =?

X and Y independent. Hence

E(g(X ,Y ) + h(X ,Y )) =
91
6

+ E(XY )

=
91
6

+ E(X ) · E(Y ) =
91
6

+
7
2
· 7

2
=

329
12
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Exercise 4.17

x −3 6 9
f (x) 1

6
1
2

1
3

Find
E(X )

E(X 2)

E
{
(2X + 1)2}

E(X ) = 1
6 · (−3) + 1

2 · 6 + 1
3 · 9 = 51

2

E(X 2) = 1
6 · (−3)2 + 1

2 · 6
2 + 1

3 · 9
2 = 461

2

E
{
(2X + 1)2} = E(4 X 2 + 4 X + 1) =

4 E(X 2) + 4 E(X ) + 1 = 4 · 461
2 + 4 · 51

2 + 1 = 209



beamer-tu-logo

What Did We Do Last Time? Expectation (Mean) Expectations (Means) of Functions of RVs Exercises

Exercise 4.17

x −3 6 9
f (x) 1

6
1
2

1
3

Find
E(X )

E(X 2)

E
{
(2X + 1)2}

E(X ) = 1
6 · (−3) + 1

2 · 6 + 1
3 · 9 = 51

2

E(X 2) = 1
6 · (−3)2 + 1

2 · 6
2 + 1

3 · 9
2 = 461

2

E
{
(2X + 1)2} = E(4 X 2 + 4 X + 1) =

4 E(X 2) + 4 E(X ) + 1 = 4 · 461
2 + 4 · 51

2 + 1 = 209



beamer-tu-logo

What Did We Do Last Time? Expectation (Mean) Expectations (Means) of Functions of RVs Exercises

Exercise 4.17

x −3 6 9
f (x) 1

6
1
2

1
3

Find
E(X )

E(X 2)

E
{
(2X + 1)2}

E(X ) = 1
6 · (−3) + 1

2 · 6 + 1
3 · 9 = 51

2

E(X 2) = 1
6 · (−3)2 + 1

2 · 6
2 + 1

3 · 9
2 = 461

2

E
{
(2X + 1)2} = E(4 X 2 + 4 X + 1) =

4 E(X 2) + 4 E(X ) + 1 = 4 · 461
2 + 4 · 51

2 + 1 = 209



beamer-tu-logo

What Did We Do Last Time? Expectation (Mean) Expectations (Means) of Functions of RVs Exercises

Exercise 4.17

x −3 6 9
f (x) 1

6
1
2

1
3

Find
E(X )

E(X 2)

E
{
(2X + 1)2}

E(X ) = 1
6 · (−3) + 1

2 · 6 + 1
3 · 9 = 51

2

E(X 2) = 1
6 · (−3)2 + 1

2 · 6
2 + 1

3 · 9
2 = 461

2

E
{
(2X + 1)2} = E(4 X 2 + 4 X + 1) =

4 E(X 2) + 4 E(X ) + 1 = 4 · 461
2 + 4 · 51

2 + 1 = 209



beamer-tu-logo

What Did We Do Last Time? Expectation (Mean) Expectations (Means) of Functions of RVs Exercises

Exercise 4.17

x −3 6 9
f (x) 1

6
1
2

1
3

Find
E(X )

E(X 2)

E
{
(2X + 1)2}

E(X ) = 1
6 · (−3) + 1

2 · 6 + 1
3 · 9 = 51

2

E(X 2) = 1
6 · (−3)2 + 1

2 · 6
2 + 1

3 · 9
2 = 461

2

E
{
(2X + 1)2} = E(4 X 2 + 4 X + 1) =

4 E(X 2) + 4 E(X ) + 1 = 4 · 461
2 + 4 · 51

2 + 1 = 209



beamer-tu-logo

What Did We Do Last Time? Expectation (Mean) Expectations (Means) of Functions of RVs Exercises

Exercise 4.17

x −3 6 9
f (x) 1

6
1
2

1
3

Find
E(X )

E(X 2)

E
{
(2X + 1)2}

E(X ) = 1
6 · (−3) + 1

2 · 6 + 1
3 · 9 = 51

2

E(X 2) = 1
6 · (−3)2 + 1

2 · 6
2 + 1

3 · 9
2 = 461

2

E
{
(2X + 1)2} = E(4 X 2 + 4 X + 1) =

4 E(X 2) + 4 E(X ) + 1 = 4 · 461
2 + 4 · 51

2 + 1 = 209



beamer-tu-logo

What Did We Do Last Time? Expectation (Mean) Expectations (Means) of Functions of RVs Exercises

And now . . .

1 What Did We Do Last Time?
Partition of a sample space
Bayes′ rule

2 Expectation (Mean)
Expectation (Mean) of Discrete Random Variable
Expectation (Mean) of Continuous Random Variable

3 Expectations (Means) of Functions of RVs

4 Exercises
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Try all odd exercises from pages 117-118.
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